zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Application of the combined integral method to Stefan problems. (English) Zbl 1225.35260
Summary: We present a new, accurate form of the heat balance integral method, termed the combined integral method (CIM). The application of this method to Stefan problems is discussed. For simple test cases the results are compared with exact and asymptotic limits. In particular, it is shown that the CIM is more accurate than the second order, large Stefan number, perturbation solution for a wide range of Stefan numbers. In the initial examples it is shown that the CIM reduces the standard problem, consisting of a PDE defined over a domain specified by an ODE, to the solution of one or two algebraic equations. The latter examples, where the boundary temperature varies with time, reduce to a set of three first order ODEs.

MSC:
35R35Free boundary problems for PDE
80A22Stefan problems, phase changes, etc.
35K05Heat equation
65M99Numerical methods for IVP of PDE
References:
[1]Goodman, T. R.: The heat-balance integral and its application to problems involving a change of phase, Trans. ASME 80, 335-342 (1958)
[2]Antic, A.; Hill, J.: The double-diffusivity heat transfer model for grain stores incorporating microwave heating, Appl. math. Model. 27, 629-647 (2003) · Zbl 1043.80001 · doi:10.1016/S0307-904X(03)00072-6
[3]Myers, T. G.; Mitchell, S. L.: Application of the heat balance and refined integral methods to the Korteweg – de Vries equation, Thermal sci. 13, No. 2, 113-119 (2009)
[4]Sahu, P. D. S.K.; Bhattacharyya, S.: How good is goodman’s heat-balance integral method for analyzing the rewetting of hot surfaces?, Thermal sci. 13, No. 2, 97-112 (2009)
[5]Novozhilov, V.: Application of heat-balance integral method to conjugate thermal explosion, Thermal sci. 13, No. 2, 73-80 (2009)
[6]Pohlhausen, K.: Zur naherungsweisen integration der differentialgleichunger der laminaren grenzschicht, Z. math. Mech. 1, 252-258 (1921)
[7]Myers, T. G.: An approximate solution method for boundary layer flow of a power law fluid over a flat plate, Int. J. Heat mass trans. 53 (2010)
[8]Schlichting, H.: Boundary layer theory, (2000)
[9]Mitchell, S. L.; Myers, T. G.: Application of standard and refined heat balance integral methods to one-dimensional Stefan problems, SIAM rev. 52, No. 1, 57-86 (2010)
[10]Myers, T. G.: Optimizing the exponent in the heat balance and refined integral methods, Int. comm. Heat mass trans. 36, No. 2, 143-147 (2009)
[11]Myers, T. G.: Optimal exponent heat balance and refined integral methods applied to Stefan problems, Int. J. Heat mass trans. 53 (2010)
[12]Mitchell, S. L.; Myers, T. G.: A heat balance integral method for one-dimensional finite ablation, AIAA J. Thermophys. 22, No. 3, 508-514 (2008)
[13]Langford, D.: The heat balance integral method, Int. J. Heat mass trans. 16, 2424-2428 (1973)
[14]Sadoun, N.; Si-Ahmed, E. -K.: A new analytical expression of the freezing constant in the Stefan problem with initial superheat, Numer. meth. Therm. probl. 9, 843-854 (1995)
[15]Gupta, R. S.; Banik, N. C.: Constrained integral method for solving moving boundary problems, Comput. methods appl. Mech. eng. 67, 211-221 (1988) · Zbl 0619.65125 · doi:10.1016/0045-7825(88)90126-0
[16]Gupta, R. S.; Banik, N. C.: Approximate method for the oxygen diffusion problem, Int. J. Heat mass trans. 32, 781-783 (1989)
[17]Gupta, R. S.; Banik, N. C.: Diffusion of oxygen in a sphere with simultaneous absorption, Appl. math. Model. 14, 114-121 (1990) · Zbl 0701.65084 · doi:10.1016/0307-904X(90)90044-6
[18]Hill, J. M.: One-dimensional Stefan problems: an introduction, (1987)
[19]S.L. Mitchell, T.G. Myers, Improving the accuracy of heat balance integral methods applied to thermal problems with time dependent boundary conditions, J. Math. Anal. Applic., submitted for publication. · Zbl 1194.80053 · doi:10.1016/j.ijheatmasstransfer.2010.04.015
[20]Alexiades, V.; Solomon, A.: Mathematical modeling of melting and freezing processes, (1993)
[21]Evans, J. D.; King, J. R.: Asymptotic results for the Stefan problem with kinetic undercooling, Q. J. Mech. appl. Math. 53, 449-473 (2000) · Zbl 0998.80004 · doi:10.1093/qjmam/53.3.449
[22]Crank, J.: Mathematics of diffusion, (1975)
[23]Mitchell, S. L.; Vynnycky, M.: Finite-difference methods with increased accuracy and correct initialization for one-dimensional Stefan problems, Appl. math. Comput. 215, 1609-1621 (2009) · Zbl 1177.80078 · doi:10.1016/j.amc.2009.07.054
[24]Sadoun, N.; Si-Ahmed, E. -K.; Colinet, P.: On the refined integral method for the one-phase Stefan problem with time-dependent boundary conditions, App. math. Model. 30, 531-544 (2006) · Zbl 1183.80093 · doi:10.1016/j.apm.2005.06.003
[25]Cohen, D. S.; Erneux, T.: Free boundary problems in controlled release pharmaceuticals. I: diffusion in glassy polymers, SIAM J. Appl. math. 48, 1451-1465 (1988) · Zbl 0704.35141 · doi:10.1137/0148089