×

Infinitely many homoclinic orbits for Hamiltonian systems with indefinite sign subquadratic potentials. (English) Zbl 1225.37071

Summary: We deal with the existence and multiplicity of homoclinic solutions of the second-order Hamiltonian system \[ \ddot u(t) - L(t)u(t) + \nabla W(t, u(t)) = 0, \] where \(L(t)\) and \(W(t,x)\) are neither autonomous nor periodic in \(t\). Under the assumption that \(W(t,x)\) is indefinite sign and subquadratic as \(|x|\to +\infty \) and \(L(t)\) is a \(N\times N\) real symmetric positive definite matrices for all \(t\in \mathbb R\), we establish some existence criteria to guarantee that the above system has at least one or infinitely many homoclinic solutions by using the genus properties in critical theory.

MSC:

37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
70H05 Hamilton’s equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Poincaré, H., Les Méhodes Nouvelles de la Méacute Céeste (1897-1899), Gauthier-Villars: Gauthier-Villars Pairs
[2] Ambrosetti, A.; Coti Zelati, V., Multiple homoclinic orbits for a class of conservative systems, Rend. Semin. Mat. Univ. Padova, 89, 177-194 (1993) · Zbl 0806.58018
[3] Caldiroli, P.; Montecchiari, P., Homoclinic orbits for second order Hamiltonian systems with potential changing sign, Comm. Appl. Nonlinear Anal., 1, 2, 97-129 (1994) · Zbl 0867.70012
[4] Coti Zelati, V.; Ekeland, I.; Sere, E., A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288, 1, 133-160 (1990) · Zbl 0731.34050
[5] Coti Zelati, V.; Rabinowitz, P. H., Homoclinic orbits for second second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4, 693-727 (1991) · Zbl 0744.34045
[6] Ding, Y. H.; Girardi, M., Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign, Dynam. Systems Appl., 2, 1, 131-145 (1993) · Zbl 0771.34031
[7] Flavia, A., Periodic and homoclinic solutions to a class of Hamiltonian systems with indefinite potential in sign, Boll. Un. Mat. Ital. B (7), 10, 2, 303-324 (1996) · Zbl 1013.34038
[8] Paturel, E., Multiple homoclinic orbits for a class of Hamiltonian systems, Calc. Var. Partial Differential Equations, 12, 2, 117-143 (2001) · Zbl 1052.37049
[9] Rabinowitz, P. H.; Tanaka, K., Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206, 3, 473-499 (1991) · Zbl 0707.58022
[10] Ding, Y. H.; Lee, C., Homoclinics for asymptotically quadratic and superquadratic Hamiltonian systems, Nonlinear Anal., 71, 5-6, 1395-1413 (2009) · Zbl 1168.58302
[11] Izydorek, M.; Janczewska, J., Homoclinic solutions for a class of second order Hamiltonian systems, J. Differential Equations, 219, 2, 375-389 (2005) · Zbl 1080.37067
[12] Tang, X. H.; Xiao, L., Homoclinic solutions for a class of second-order Hamiltonian systems, Nonlinear Anal., 71, 3-4, 1140-1152 (2009) · Zbl 1185.34056
[13] Tang, X. H.; Xiao, L., Homoclinic solutions for nonautonomous second-order Hamiltonian systems with a coercive potential, J. Math. Anal. Appl., 351, 586-594 (2009) · Zbl 1153.37408
[14] Carriao, P. C.; Miyagaki, O. H., Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems, J. Math. Anal. Appl., 230, 1, 157-172 (1999) · Zbl 0919.34046
[15] Ding, Y. H., Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear Anal., 25, 11, 1095-1113 (1995) · Zbl 0840.34044
[16] Korman, P.; Lazer, A. C., Homoclinic orbits for a class of symmetric Hamiltonian systems, Electron. J. Differential Equations, 1994, 1, 1-10 (1994)
[17] Mawhin, J.; Willem, M., (Critical Point Theory and Hamiltonian Systems. Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, vol. 74 (1989), Springer-Verlag: Springer-Verlag New York) · Zbl 0676.58017
[18] Omana, W.; Willem, M., Homoclinic orbits for a class of Hamiltonian systems, Differential Integral Equations, 5, 5, 1115-1120 (1992) · Zbl 0759.58018
[19] Ou, Z. Q.; Tang, C. L., Existence of homoclinic orbits for the second order Hamiltonian systems, J. Math. Anal. Appl., 291, 1, 203-213 (2004) · Zbl 1057.34038
[20] Tang, X. H.; Lin, X. Y., Homoclinic solutions for a class of second-order Hamiltonian systems, J. Math. Anal. Appl., 354, 2, 539-549 (2009) · Zbl 1179.37082
[21] Zhang, S. Q., Symmetrically homoclinic orbits for symmetric Hamiltonian systems, J. Math. Anal. Appl., 247, 2, 645-652 (2000) · Zbl 0983.37076
[22] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 4, 349-381 (1973) · Zbl 0273.49063
[23] Lv, Y.; Tang, C., Existence of even homoclinic orbits for a class of Hamiltonian systems, Nonlinear Anal., 67, 7, 2189-2198 (2007) · Zbl 1121.37048
[24] Yang, J.; Zhang, F., Infinitely many homoclinic orbits for the second-order Hamiltonian systems with super-quadratic potentials, Nonlinear Anal. RWA, 10, 1417-1423 (2009) · Zbl 1162.34328
[25] Zhang, Z.; Yuan, R., Homoclinic solutions for a class of non-autonomous subquadratic second order Hamiltonian systems, Nonlinear Anal., 71, 4125-4130 (2009) · Zbl 1173.34330
[26] Zhang, Z.; Yuan, R., Homoclinic solutions for some second order non-autonomous systems, Nonlinear Anal., 71, 5790-5798 (2009) · Zbl 1203.34068
[27] Rabinowitz, P. H., (Minimax Methods in Critical Point Theory with Applications to Differential Equations. Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. in Math., vol. 65 (1986), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI) · Zbl 0609.58002
[28] Salvatore, A., Homoclinic orbits for a special class of nonautonomous Hamiltonian systems, in: Proceedings of the Second World Congress of Nonlinear Analysis, Part 8 (Athens, 1996), Nonlinear Anal., 30, 8, 4849-4857 (1997) · Zbl 0893.34041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.