zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New generalizations of basic theorems in the KKM theory. (English) Zbl 1225.47060
Some new KKM type theorems are stated for intersectionally closed-valued KKM maps. Section 2 deals with some history of the basic theorems and their pioneering applications due to Fan, Browder and others; Section 3 introduces the basic concepts of abstract spaces and KKM spaces. Section 4 deals with general KKM type theorems on abstract convex spaces satisfying a partial KKM principle for KKM maps having intersectionally closed values. In Section 5, the Fan type whole intersection theorem, the Fan-Browder type fixed point theorems, and maximal element theorems for abstract convex spaces having a partial KKM principle are deduced. Finally, Section 6 deals with a Fan type matching theorem, the Fan minimax inequality, and some variational inequalities on abstract convex spaces.
MSC:
47H04Set-valued operators
47H10Fixed point theorems for nonlinear operators on topological linear spaces
58E35Variational inequalities (global problems)
54H25Fixed-point and coincidence theorems in topological spaces
References:
[1]Park, S.: Some coincidence theorems on acyclic multifunctions and applications to KKM theory, Fixed point theory and applications, 248-277 (1992)
[2]Park, S.: Ninety years of the Brouwer fixed point theorem, Vietnam J. Math. 27, 187-222 (1999) · Zbl 0938.54039
[3]Park, S.: The KKM principle in abstract convex spaces: equivalent formulations and applications, Nonlinear anal. 73, 1028-1042 (2010) · Zbl 1214.47042 · doi:10.1016/j.na.2010.04.029
[4]Luc, D. T.; Sarabi, E.; Soubeyran, A.: Existence of solutions in variational relation problems without convexity, J. math. Anal. appl. 364, 544-555 (2010) · Zbl 1183.49017 · doi:10.1016/j.jmaa.2009.10.040
[5]Fan, K.: A generalization of tychonoff’s fixed point theorem, Math. ann. 142, 305-310 (1961) · Zbl 0093.36701 · doi:10.1007/BF01353421
[6]Fan, K.: Invariant subspaces of certain linear operators, Bull. amer. Math. soc. 69, 773-777 (1963) · Zbl 0118.10803 · doi:10.1090/S0002-9904-1963-11028-9
[7]Fan, K.: Sur un théorème minimax, C. R. Acad. sci. Paris sér. I. math. 259, 3925-3928 (1964)
[8]Fan, K.: Applications of a theorem concerning sets with convex sections, Math. ann. 163, 189-203 (1966) · Zbl 0138.37401 · doi:10.1007/BF02052284
[9]Fan, K.: Extensions of two fixed point theorems of F.E. Browder, Math. Z. 112, 234-240 (1969) · Zbl 0185.39503 · doi:10.1007/BF01110225
[10]Fan, K.: A minimax inequality and applications, Inequalities III, 103-113 (1972)
[11]Fan, K.: Fixed-point and related theorems for noncompact convex sets, Game theory and related topics, 151-156 (1979) · Zbl 0432.54040
[12]Fan, K.: Some properties of convex sets related to fixed point theorems, Math. ann. 266, 519-537 (1984) · Zbl 0515.47029 · doi:10.1007/BF01458545
[13]Browder, F. E.: The fixed point theory of multi-valued mappings in topological vector spaces, Math. ann. 177, 283-301 (1968) · Zbl 0176.45204 · doi:10.1007/BF01350721
[14]S. Park, Generalized Fan–Browder fixed point theorems and their applications, Collec. of Papers Dedicated to J.G. Park, Chonbook Nat. Univ., 1989, pp. 51–77.
[15]Park, S.: New topological versions of the Fan–Browder fixed point theorem, Nonlinear anal. 47, 595-606 (2001) · Zbl 1042.47519 · doi:10.1016/S0362-546X(01)00204-8
[16]Park, S.: Elements of the KKM theory on abstract convex spaces, J. korean math. Soc. 45, No. 1, 1-27 (2008) · Zbl 1149.47040 · doi:10.4134/JKMS.2008.45.1.001
[17]Rockafellar, R. T.: Convex analysis, (1970) · Zbl 0193.18401
[18]Park, S.: New foundations of the KKM theory, J. nonlinear convex anal. 9, No. 3, 331-350 (2008) · Zbl 1167.47041 · doi:http://www.ybook.co.jp/online/jncae/vol9/p331.html
[19]Park, S.; Kim, H.: Foundations of the KKM theory on generalized convex spaces, J. math. Anal. appl. 209, 551-571 (1997) · Zbl 0873.54048 · doi:10.1006/jmaa.1997.5388
[20]Kim, H.; Park, S.: Generalized KKM maps, maximal elements, and almost fixed points, J. korean math. Soc. 44, No. 2, 393-406 (2007) · Zbl 1148.47038 · doi:10.4134/JKMS.2007.44.2.393
[21]Tian, G.: Generalizations of the FKKM theorem and the Ky Fan minimax inequality, with applications to maximal elements, price equilibrium, and complementarity, J. math. Anal. appl. 170, 457-471 (1992) · Zbl 0767.49007 · doi:10.1016/0022-247X(92)90030-H
[22]Park, S.: Remarks on some basic concepts in the KKM theory, Nonlinear anal. (2010)