zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Some convergence theorems of non-implicit iteration process with errors for a finite families of I-asymptotically nonexpansive mappings. (English) Zbl 1225.47095
Summary: The purpose of this paper is to study the weak and strong convergence of a non-implicit iteration process with errors to a common fixed point for a finite family of I-asymptotically quasi-nonexpansive mappings in Banach spaces. The results presented in this paper extend and improve the corresponding results of several authors.
MSC:
47J25Iterative procedures (nonlinear operator equations)
47H09Mappings defined by “shrinking” properties
References:
[1]Bauschke, H. H.: The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. math. Anal. appl. 202, 150-159 (1996) · Zbl 0956.47024 · doi:10.1006/jmaa.1996.0308
[2]Chang, S. S.; Cho, Y. J.: The implicit iterative processes for asymptotically nonexpansive mappings, Nonlinear funct. Anal. appl. 1, 369-382 (2003) · Zbl 1065.47071
[3]Chang, S. S.; Cho, Y. J.; Zhou, H. Y.: Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, J. korean math. Soc. 38, 1245-1260 (2001) · Zbl 1020.47059
[4]Chang, S. S.; Tan, K. K.; Lee, H. W. J.; Chan, Chi Kin: On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings, J. math. Anal. appl. 313, 273-283 (2003) · Zbl 1086.47044 · doi:10.1016/j.jmaa.2005.05.075
[5]Chidume, C. E.; Shahzad, N.: Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings, Nonlinear anal. 62, No. 6, 1149-1156 (2005) · Zbl 1090.47055 · doi:10.1016/j.na.2005.05.002
[6]Gu, F.: New implicit iterative process with errors for a finite family of nonexpansive mappings, Nonlinear funct. Anal. appl. 13, No. 5, 865-875 (2008) · Zbl 1162.47046
[7]Gu, F.: Strong and weak convergence of implicit iterative process with errors for asymptotically nonexpansive mappings, J. appl. Anal. 12, No. 2, 267-282 (2006) · Zbl 1138.47045 · doi:10.1515/JAA.2006.267
[8]Gu, F.: Implicit iterative process for common fixed point of a finite family of asymptotically nonexpansive, Stud. sci. Math. hung. 45, No. 2, 235-250 (2008) · Zbl 1164.47066 · doi:10.1556/SScMath.2007.1044
[9]Gu, F.: The new composite implicit iterative process with errors for common fixed points of a finite family of strictly pseudocontractive mappings, J. math. Anal. appl. 329, No. 2, 766-777 (2007) · Zbl 1153.47306 · doi:10.1016/j.jmaa.2006.07.005
[10]F. Gu, J. Lu, A new composite implicit iteration process for a finite family of nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., vol. 2006, pp. 1 – 11 (Article ID 82738). · Zbl 1143.47304 · doi:10.1155/FPTA/2006/82738
[11]Goebel, K.; Kirk, W. A.: A fixed point theorem for asymptotically nonexpansive mappings, Proc. amer. Math. soc. 35, 171-174 (1972) · Zbl 0256.47045 · doi:10.2307/2038462
[12]Gornicki, J.: Weak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces, Comment. math. Univ. carolin. 301, 249-252 (1989) · Zbl 0686.47045
[13]Halpern, B.: Fixed points of nonexpansive maps, Bull. amer. Math. soc. 73, 957-961 (1967) · Zbl 0177.19101 · doi:10.1090/S0002-9904-1967-11864-0
[14]Lions, P. L.: Approximation de points fixes de contractions, CR acad. Sci. Paris, ser. A 284, 1357-1359 (1977) · Zbl 0349.47046
[15]Liu, J. Ai: Some convergence theorems of implicit iterative process for nonexpansive mappings in Banach spaces, Math. commun. 7, 113-118 (2002) · Zbl 1025.47044
[16]Opial, Z.: Weak convergence of successive approximations for nonexpansive mappings, Bull. amer. Math. soc. 73, 591-597 (1967) · Zbl 0179.19902 · doi:10.1090/S0002-9904-1967-11761-0
[17]Osilike, M. O.: Implicit iteration process for common fixed point of a finite family of strictly pseudocontractive maps, J. math. Anal. appl. 294, 73-81 (2004) · Zbl 1045.47056 · doi:10.1016/j.jmaa.2004.01.038
[18]Petryshyn, W. V.; Williamson, T. E.: Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. math. Anal. appl. 43, 459-497 (1973) · Zbl 0262.47038 · doi:10.1016/0022-247X(73)90087-5
[19]Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. math. Anal. appl. 75, 287-292 (1980) · Zbl 0437.47047 · doi:10.1016/0022-247X(80)90323-6
[20]B.E. Rhoades, S. Temir, Convergence theorems for I – nonexpansive mapping, Int. J. Math. Math. Sci.(IJMMS), vol. 2006, pp. 1 – 4 (Article ID 63435). · Zbl 1146.47045 · doi:10.1155/IJMMS/2006/63435
[21]Schu, J.: Weak and strong convergence of fixed points of asymptotically nonexpansive mappings, Bull. austral. Math. soc. 43, 153-159 (1991) · Zbl 0709.47051 · doi:10.1017/S0004972700028884
[22]Sun, Z. H.: Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. math. Anal. appl. 286, 351-358 (2003) · Zbl 1095.47046 · doi:10.1016/S0022-247X(03)00537-7
[23]Tan, K. K.; Xu, H. K.: The nonlinear ergodic theorem for asymptotically nonexpansive mappings in Banach spaces, Proc. amer. Math. soc. 114, 399-404 (1992) · Zbl 0781.47045 · doi:10.2307/2159661
[24]Temir, S.: On the convergence theorems of implicit iteration process for a finite family of I – asymptotically nonexpansive mappings, J. comput. Appl. math. 225, No. 2, 398-405 (2009) · Zbl 1162.47053 · doi:10.1016/j.cam.2008.07.049
[25]Temir, S.; Gul, O.: Convergence theorem for I – asymptotically quasi-nonexpansive mapping in Hilbert space, J. math. Anal. appl. 329, 759-765 (2007) · Zbl 1153.47309 · doi:10.1016/j.jmaa.2006.07.004
[26]Wittmann, R.: Approximation of fixed points of nonexpansive mappings, Arch. math. 58, 86-491 (1992) · Zbl 0797.47036 · doi:10.1007/BF01190119
[27]Xu, H. K.; Ori, M. G.: An implicit iterative process for nonexpansive mappings, Numer. funct. Anal. optimiz. 22, 767-773 (2001) · Zbl 0999.47043 · doi:10.1081/NFA-100105317
[28]Yao, S. S.; Wang, L.: Strong convergence theorem for I – quasi-nonexpansive mappings, Far east J. Math. sci. (FJMS) 27, No. 1, 111-119 (2007) · Zbl 1204.47089 · doi:http://pphmj.com/abstract/2741.htm
[29]Zhou, Y. Y.; Chang, S. S.: Convergence of implicit iterative process for a finite family of asymptotically nonexpansive mappings in Banach spaces, Numer. funct. Anal. optimiz. 23, 911-921 (2002) · Zbl 1041.47048 · doi:10.1081/NFA-120016276