zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Projection iterative methods for solving some systems of general nonconvex variational inequalities. (English) Zbl 1225.49017
Summary: In this article, we introduce and consider a new system of general nonconvex variational inequalities involving four different operators. We use the projection operator technique to establish the equivalence between the system of general nonconvex variational inequalities and a fixed-point problem. This alternative equivalent formulation is used to suggest and analyse some new explicit iterative methods for this system of nonconvex variational inequalities. We also study the convergence analysis of the new iterative method under certain mild conditions. Since this new system includes the system of nonconvex variational inequalities, variational inequalities and related optimization problems as special cases, results obtained in this article continue to hold for these problems. Our results can be viewed as a refinement and an improvement of the previously known results for variational inequalities.
49J40Variational methods including variational inequalities
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)
49M25Discrete approximations in calculus of variations