zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Spatiotemporal dynamics of a Leslie-Gower predator-prey model incorporating a prey refuge. (English) Zbl 1225.49038
Summary: We investigate the spatiotemporal dynamics of a two-dimensional predator-prey model, which is based on a modified version of the Leslie-Gower scheme incorporating a prey refuge. We establish a Lyapunov function to prove the global stability of the equilibria with diffusion and determine the Turing space in the spatial domain. Furthermore, we perform a series of numerical simulations and find that the model dynamics exhibits complex Turing pattern replication: stripes, cold/hot spots-stripes coexistence and cold/hot spots patterns. The results indicate that the effect of the prey refuge for pattern formation is tremendous. This may enrich the dynamics of the effect of refuge on predator-prey systems.
MSC:
49N75Pursuit and evasion games in calculus of variations
93C20Control systems governed by PDE
93D05Lyapunov and other classical stabilities of control systems
References:
[1]Kuang, Y.; Beretta, E.: Global qualitative analysis of a ratio-dependent predator–prey system, Journal of mathematical biology 36, No. 4, 389-406 (1998) · Zbl 0895.92032 · doi:10.1007/s002850050105
[2]Xiao, D.; Ruan, S.: Global dynamics of a ratio-dependent predator–prey system, Journal of mathematical biology 43, No. 3, 268-290 (2001) · Zbl 1007.34031 · doi:10.1007/s002850100097
[3]Hsu, S.; Hwang, T.; Kuang, Y.: Global analysis of the michaelis–menten-type ratio-dependent predator–prey system, Journal of mathematical biology 42, No. 6, 489-506 (2001) · Zbl 0984.92035 · doi:10.1007/s002850100079
[4]Leslie, P.: Some further notes on the use of matrices in population mathematics, Biometrika 35, No. 3–4, 213-245 (1948) · Zbl 0034.23303
[5]Leslie, P.: A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika 45, No. 1–2, 16-31 (1958) · Zbl 0089.15803
[6]Upadhyay, R.; Rai, V.: Why chaos is rarely observed in natural populations, Chaos, solitons & fractals 8, No. 12, 1933-1939 (1997)
[7]Aziz-Alaoui, M.: Study of a Leslie–gower-type tritrophic population model, Chaos, solitons & fractals 14, No. 8, 1275-1293 (2002) · Zbl 1031.92027 · doi:10.1016/S0960-0779(02)00079-6
[8]Aziz-Alaoui, M.; Okiye, M.: Boundedness and global stability for a predator–prey model with modified Leslie–gower and Holling-type II schemes, Applied mathematics letters 16, No. 7, 1069-1075 (2003) · Zbl 1063.34044 · doi:10.1016/S0893-9659(03)90096-6
[9]Korobeinikov, A.: A Lyapunov function for Leslie–gower predator–prey models, Applied mathematics letters 14, No. 6, 697-699 (2001) · Zbl 0999.92036 · doi:10.1016/S0893-9659(01)80029-X
[10]Letellier, C.; Aziz-Alaoui, M.: Analysis of the dynamics of a realistic ecological model, Chaos, solitons & fractals 13, No. 1, 95-107 (2002) · Zbl 0977.92029 · doi:10.1016/S0960-0779(00)00239-3
[11]Letellier, C.; Aguirre, L.; Maquet, J.; Aziz-Alaoui, M.: Should all the species of a food chain be counted to investigate the global dynamics?, Chaos, solitons & fractals 13, No. 5, 1099-1113 (2002) · Zbl 1004.92039 · doi:10.1016/S0960-0779(01)00116-3
[12]Nindjin, A.; Aziz-Alaoui, M.; Cadivel, M.: Analysis of a predator–prey model with modified Leslie–gower and Holling-type II schemes with time delay, Nonlinear analysis. Real world applications 7, No. 5, 1104-1118 (2006) · Zbl 1104.92065 · doi:10.1016/j.nonrwa.2005.10.003
[13]Gakkhar, S.; Singh, B.: Dynamics of modified Leslie–gower-type prey–predator model with seasonally varying parameters, Chaos, solitons & fractals 27, No. 5, 1239-1255 (2006) · Zbl 1094.92059 · doi:10.1016/j.chaos.2005.04.097
[14]Chen, F.; Shi, J.: On a delayed nonautonomous ratio-dependent predator–prey model with Holling type functional response and diffusion, Applied mathematics and computation 192, No. 2, 358-369 (2007) · Zbl 1193.34140 · doi:10.1016/j.amc.2007.03.012
[15]Chen, F.; You, M.: Permanence, extinction and periodic solution of the predator–prey system with beddington–deangelis functional response and stage structure for prey, Nonlinear analysis. Real world applications 9, No. 2, 207-221 (2008) · Zbl 1142.34051 · doi:10.1016/j.nonrwa.2006.09.009
[16]Chen, F.; Chen, L.; Xie, X.: On a Leslie–gower predator–prey model incorporating a prey refuge, Nonlinear analysis. Real world applications 10, No. 5, 2905-2908 (2009) · Zbl 1167.92032 · doi:10.1016/j.nonrwa.2008.09.009
[17]Chen, L.; Chen, F.: Global stability of a Leslie–gower predator–prey model with feedback controls, Applied mathematics letters 22, No. 9, 1330-1334 (2009) · Zbl 1173.34333 · doi:10.1016/j.aml.2009.03.005
[18]Nindjin, A.; Aziz-Alaoui, M.: Persistence and global stability in a delayed Leslie–gower type three species food chain, Journal of mathematical analysis and applications 340, No. 1, 340-357 (2008) · Zbl 1127.92046 · doi:10.1016/j.jmaa.2007.07.078
[19]Song, Y.; Yuan, S.; Zhang, J.: Bifurcation analysis in the delayed Leslie–gower predator–prey system, Applied mathematical modelling 33, No. 11, 4049-4061 (2009) · Zbl 1205.34089 · doi:10.1016/j.apm.2009.02.008
[20]Yuan, S.; Song, Y.: Stability and Hopf bifurcations in a delayed Leslie–gower predator–prey system, Journal of mathematical analysis and applications 355, No. 1, 82-100 (2009) · Zbl 1170.34051 · doi:10.1016/j.jmaa.2009.01.052
[21]Aguirre, P.; González-Olivares, E.; Sáez, E.: Two limit cycles in a Leslie–gower predator–prey model with additive allee effect, Nonlinear analysis. Real world applications 10, No. 3, 1401-1416 (2009) · Zbl 1160.92038 · doi:10.1016/j.nonrwa.2008.01.022
[22]Aguirre, P.; González-Olivares, E.; Sáez, E.: Three limit cycles in a Leslie–gower predator–prey model with additive allee effect, SIAM journal on applied mathematics 69, No. 5, 1244-1269 (2009) · Zbl 1184.92046 · doi:10.1137/070705210
[23]Neuhauser, C.: Mathematical challenges in spatial ecology, Notices of the American mathematical society 48, No. 11, 1304-1314 (2001) · Zbl 1128.92328 · doi:http://www.ams.org/notices/200111/fea-neuhauser.pdf
[24]Cantrell, R.; Cosner, C.: Spatial ecology via reaction–diffusion equations, (2003)
[25]Camara, B.; Aziz-Alaoui, M.: Dynamics of predator–prey model with diffusion, Dynamics of continuous, discrete and impulsive systems 15, 897-906 (2008) · Zbl 1170.35052
[26]Camara, B.; Aziz-Alaoui, M.: Turing and Hopf patterns formation in a predator–prey model with Leslie–gower-type functional response, Dynamics of continuous, discrete and impulsive systems 16, 1-11 (2009) · Zbl 1173.35340 · doi:http://dcdis001.watam.org/volumes/abstract_pdf/2009v16/v16n4b-pdf/3.pdf
[27]B. Camara, Complexité de dynamiques de modèles proie–prédateur avec diffusion et applications, Ph.D. Thesis, Universitè du Havre, Lorient, 2009.
[28]Mcnair, J.: The effects of refuges on predator–prey interactions: a reconsideration, Theoretical population biology 29, No. 1, 38-63 (1986) · Zbl 0594.92017 · doi:10.1016/0040-5809(86)90004-3
[29]Sih, A.: Prey refuges and predator–prey stability, Theoretical population biology 31, No. 1, 1-12 (1987)
[30]Hausrath, A.: Analysis of a model predator–prey system with refuges, Journal of mathematical analysis and applications 181, No. 2, 531-545 (1994) · Zbl 0799.34047 · doi:10.1006/jmaa.1994.1042
[31]Hochberg, M.; Holt, R.: Refuge evolution and the population dynamics of coupled host-parasitiod associations, Evolutionary ecology 9, No. 6, 633-661 (1995)
[32]Ives, A.; Dobson, A.: Antipredator behavior and the population dynamics of simple predator–prey systems, The American naturalist 130, No. 3, 431-447 (1987)
[33]Ruxton, G.: Short term refuge use and stability of predator–prey models, Theoretical population biology 47, No. 1, 1-17 (1995) · Zbl 0812.92023 · doi:10.1006/tpbi.1995.1001
[34]Krivan, V.: Effects of optimal antipredator behavior of prey on predator–prey dynamics: the role of refuges, Theoretical population biology 53, No. 2, 131-142 (1998) · Zbl 0945.92021 · doi:10.1006/tpbi.1998.1351
[35]Gonzalez-Olivares, E.; Ramos-Jiliberto, R.: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecological modelling 166, No. 1–2, 135-146 (2003)
[36]Kar, T.: Stability analysis of a prey–predator model incorporating a prey refuge, Communications in nonlinear science and numerical simulation 10, No. 6, 681-691 (2005)
[37]Huang, Y.; Chen, F.; Zhong, L.: Stability analysis of a prey–predator model with Holling type III response function incorporating a prey refuge, Applied mathematics and computation 182, No. 1, 672-683 (2006) · Zbl 1102.92056 · doi:10.1016/j.amc.2006.04.030
[38]Srinivasu, P.; Gayatri, I.: Influence of prey reserve capacity on predator–prey dynamics, Ecological modelling 181, No. 2–3, 191-202 (2005)
[39]Ko, W.; Ryu, K.: Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a prey refuge, Journal of differential equations 231, No. 2, 534-550 (2006)
[40]Kar, K.: Modelling and analysis of a harvested prey–predator system incorporating a prey refuge, Journal of computational and applied mathematics 185, No. 1, 19-33 (2006) · Zbl 1071.92041 · doi:10.1016/j.cam.2005.01.035
[41]Collings, J.: Bifurcation and stability analysis of a temperature-dependent mite predator–prey interaction model incorporating a prey refuge, Bulletin of mathematical biology 57, No. 1, 63-76 (1995) · Zbl 0810.92024
[42]Ma, Z.; Li, W.; Zhao, Y.; Wang, W.; Zhang, H.; Li, Z.: Effects of prey refuges on a predator–prey model with a class of functional responses: the role of refuges, Mathematical biosciences 218, No. 2, 73-79 (2009) · Zbl 1160.92043 · doi:10.1016/j.mbs.2008.12.008
[43]Chattopadhyay, J.; Tapaswi, P.: Effect of cross-diffusion on pattern formation–a nonlinear analysis, Acta applicandae mathematicae 48, No. 1, 1-12 (1997) · Zbl 0904.92011 · doi:10.1023/A:1005764514684
[44]Wang, W.; Liu, Q.; Jin, Z.: Spatiotemporal complexity of a ratio-dependent predator–prey system, Physical review E 75, No. 5, 051913 (2007)
[45]Garvie, M.: Finite-difference schemes for reaction–diffusion equations modeling predator–prey interactions in Matlab, Bulletin of mathematical biology 69, No. 3, 931-956 (2007)
[46]Munteanu, A.; Sole, R.: Pattern formation in noisy self-replicating spots, International journal of bifurcation and chaos 16, No. 12, 3679-3683 (2006) · Zbl 1113.92007 · doi:10.1142/S0218127406017063