zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A characteristic difference method for the transient fractional convection-diffusion equations. (English) Zbl 1225.65085
The authors present a new characteristic finite difference method for solving the two-sided space-fractional convection-diffusion equation. The method is a combination of characteristic methods and fractional finite difference methods. They discuss the stability, consistency and convergence of the new method, and give numerical experiments to compare it with other known methods. The results in the paper show that the new method is especially efficient and superior for the high-dimensional convection-dominated diffusion equations.
65M06Finite difference methods (IVP of PDE)
35K20Second order parabolic equations, initial boundary value problems
35R11Fractional partial differential equations
65M12Stability and convergence of numerical methods (IVP of PDE)
65M25Method of characteristics (IVP of PDE, numerical methods)
[1]Baeumer, B.; Meerschaert, M. M.; Benson, D. A.; Wheatcraft, S. W.: Subordinated advection-dispersion equation for contaminant transport, Water resour. Res. 37, 1543-1550 (2001)
[2]Benson, D.; Wheatcraft, S. W.; Meerschaert, M. M.: The fractional-order governing equation of Lévy motion, Water resour. Res. 36, 1413-1423 (2000)
[3]Benson, D.; Wheatcraft, S. W.; Meerschaert, M. M.: Application of a fractional advection-dispersion equation, Water resour. Res. 36, 1403-1413 (2000)
[4]Chaves, A.: Fractional diffusion equation to describe Lévy flights, Phys. lett. A 239, 13-16 (1998) · Zbl 1026.82524 · doi:10.1016/S0375-9601(97)00947-X
[5]Chen, S.; Liu, F.; Zhuang, P.; Anh, V.: Finite difference approximations for the fractional Fokker-Planck equation, Appl. math. Modelling 33, 256-273 (2009) · Zbl 1167.65419 · doi:10.1016/j.apm.2007.11.005
[6]Ciarlet, P. G.: The finite element method for elliptic problems, (1978)
[7]Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. anal. 47, 204-226 (2008)
[8]Douglas, J.; Russell, T. F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. anal. 19, 871-885 (1982) · Zbl 0492.65051 · doi:10.1137/0719063
[9]Ervin, V. J.; Heuer, N.; Roop, J. P.: Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation, SIAM J. Numer. anal. 45, 572-591 (2007) · Zbl 1141.65089 · doi:10.1137/050642757
[10]Gorenflo, R.: Fractional calculus: some numerical methods, Fractals and fractional calculus in continuum mechanics (1997)
[11]Hilfer, R.: Applications of fractional calculus in physics, (2000)
[12]Lin, Y.; Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation, J. comput. Phys. 225, 1533-1552 (2007) · Zbl 1126.65121 · doi:10.1016/j.jcp.2007.02.001
[13]Liu, F.; Anh, V.; Turner, I.: Numerical solution of the space fractional Fokker-Planck equation, J. comput. Appl. math. 166, 209-219 (2004) · Zbl 1036.82019 · doi:10.1016/j.cam.2003.09.028
[14]Lubich, C.: Discretized fractional calculus, SIAM J. Math. anal. 17, 704-719 (1986) · Zbl 0624.65015 · doi:10.1137/0517050
[15]Magin, R. L.: Fractional calculus in bioengineering, (2006)
[16]Meerschaert, M. M.; Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations, Appl. numer. Math. 56, 80-90 (2006) · Zbl 1086.65087 · doi:10.1016/j.apnum.2005.02.008
[17]Meerschaert, M. M.; Scheffler, H. P.; Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation, J. comput. Phys. 211, 249-261 (2006) · Zbl 1085.65080 · doi:10.1016/j.jcp.2005.05.017
[18]Oldham, K. B.; Spanier, J.: The fractional calculus, (1974)
[19]Podlubny, I.: Fractional differential equations, (1999)
[20]Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y.; Jara, B. M. Vinagre: Matrix approach to discrete fractional calculus II: Partial fractional differential equations, J. comput. Phys. 228, 3137-3153 (2009) · Zbl 1160.65308 · doi:10.1016/j.jcp.2009.01.014
[21]Raberto, M.; Scalas, E.; Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study, Phys. 314, 749-755 (2002) · Zbl 1001.91033 · doi:10.1016/S0378-4371(02)01048-8
[22]Sabatelli, L.; Keating, S.; Dudley, J.; Richmond, P.: Waiting time distributions in financial markets, Eur. phys. J. B 27, 273-275 (2002)
[23]Sousa, E.: Finite difference approximates for a fractional advection diffusion problem, J. comput. Phys. 228, 4038-4054 (2009) · Zbl 1169.65126 · doi:10.1016/j.jcp.2009.02.011
[24]Su, L.; Wang, W.; Yang, Z.: Finite difference approximations for the fractional advection-diffusion equation, Phys. lett. A 373, 4405-4408 (2009)
[25]Su, L.; Wang, W.; Xu, Q.: Finite difference methods for fractional dispersion equations, Appl. math. Comput. 216, 3329-3334 (2010) · Zbl 1193.65158 · doi:10.1016/j.amc.2010.04.060
[26]Tadjeran, C.; Meerschaert, M. M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. comput. Phys. 220, 813-823 (2007) · Zbl 1113.65124 · doi:10.1016/j.jcp.2006.05.030
[27]Tadjeran, C.; Meerschaert, M. M.; Scheffler, H. P.: A second-order accurate numerical approximation for the fractional diffusion equation, J. comput. Phys. 213, 205-213 (2006) · Zbl 1089.65089 · doi:10.1016/j.jcp.2005.08.008
[28]Varah, J. M.: A lower bounded for the smallest singular value of a matrix, Lin. alg. Appl. 11, 3-5 (1975) · Zbl 0312.65028 · doi:10.1016/0024-3795(75)90112-3
[29]Varga, R. S.: Matrix iterative analysis, (2000)
[30]Yang, Q.; Liu, F.; Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. math. Modelling 34, No. 1, 200-218 (2010) · Zbl 1185.65200 · doi:10.1016/j.apm.2009.04.006
[31]Zhuang, P.; Liu, F.; Anh, V.; Turner, I.: Numerical methods for the variable-order fractional advection-diffusion with a nonlinear source term, SIAM J. Numer. anal. 47, No. 3, 1760-1781 (2009) · Zbl 1204.26013 · doi:10.1137/080730597