zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Isogeometric discrete differential forms in three dimensions. (English) Zbl 1225.65100
The authors are concerned with a rigorous theoretical background for the approximation of 3D vector fields in the framework of isogeometric analysis. The main aim is the construction of spline spaces which fullfil a commuting de Rham diagram. A proof of the stability of the corresponding projectors and a best approximation analysis are also provided. An analysis of the Maxwell eigenvalue problem and a high frequency source problem shows the efficiency of the method.
MSC:
65N12Stability and convergence of numerical methods (BVP of PDE)
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
58A12de Rham theory (global analysis)
58A10Differential forms (global analysis)
65N25Numerical methods for eigenvalue problems (BVP of PDE)
35P05General topics in linear spectral theory of PDE