zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Optimization by simulated annealing. (English) Zbl 1225.90162

From the introduction: We briefly review the central constructs in combinatorial optimization and in statistical mechanics and then develop the similarities between the two fields. We show how the Metropolis algorithm for approximate numerical simulation of the behavior of a many-body system at a finite temperature provides a natural tool for bringing the techniques of statistical mechanics to bear on optimization.

We apply this point of view to a number of problems arising in optimal design of computers. Applications to partitioning, component placement, and wiring of electronic systems are described in this article. In each context, we introduce the problem and discuss the improvements available from optimization.

Of classic optimization problems, the traveling salesman problem has received the most intensive study. To test the power of simulated annealing, we use the algorithm on traveling salesman problems with as many as several thousand cities. This work is described in a final section, followed by our conclusions.


MSC:
90C59Approximation methods and heuristics
90C27Combinatorial optimization
82C80Numerical methods of time-dependent statistical mechanics