zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global stability for a class of virus models with cytotoxic T Lymphocyte immune response and antigenic variation. (English) Zbl 1225.92022
Summary: We study the global stability of a class of models for in-vivo virus dynamics that take into account the cytotoxic T Lymphocyte immune response and display antigenic variation. This class includes a number of models that have been extensively used to model HIV dynamics. We show that models in this class are globally asymptotically stable, under mild hypothesis, by using appropriate Lyapunov functions. We also characterise the stable equilibrium points for the entire biologically relevant parameter range. As a by-product, we are able to determine what is the diversity of the persistent strains.
MSC:
92C50Medical applications of mathematical biology
92C60Medical epidemiology
34D23Global stability of ODE
34D05Asymptotic stability of ODE
37N25Dynamical systems in biology
References:
[1]Asquith, B., Bangham, C.R.M. (2003). An introduction to lymphocyte and viral dynamics: the power and limitations of mathematical analysis. Proc. R. Soc. Lond. Ser. B: Biol. Sci., 270(1525), 1651–1657. · doi:10.1098/rspb.2003.2386
[2]Bocharov, G.A., Romanyukha, A.A. (1994). Mathematical-model of antiviral immune-response-iii–influenza-A Virus-infection. J. Theor. Biol., 167(4), 323–360. · doi:10.1006/jtbi.1994.1074
[3]Bonhoeffer, S., et al. (1997). Virus dynamics and drug therapy. Proc. Natl. Acad. Sci. USA, 94, 6971–6974. · doi:10.1073/pnas.94.13.6971
[4]de Leenheer, P., Smith, H.L. (2003). Virus dynamics: a global analysis. SIAM J. Appl. Math., 63, 1313–1327. · Zbl 1035.34045 · doi:10.1137/S0036139902406905
[5]Janeway, C., et al. (2004). Immunobiology (6th ed.). New York: Garland Science.
[6]Kooi, B., Hanegraaf, P. (2001). Bi-trophic food chain dynamics with multiple component populations. Bull. Math. Biol., 63(2), 271–299. · doi:10.1006/bulm.2000.0219
[7]Kooi, B., et al. (1998). On the use of the logistic equation in models of food chains. Bull. Math. Biol., 60, 231–246. · Zbl 1053.92520 · doi:10.1006/bulm.1997.0016
[8]Korobeinikov, A. (2004a). Global properties of basic virus dynamics models. Bull. Math. Biol., 66, 879–883. · doi:10.1016/j.bulm.2004.02.001
[9]Korobeinikov, A. (2004b). Lyapunov functions and global properties for SEIR and SEIS epidemic models. Math. Med. Biol., 21(2), 75–83. · Zbl 1055.92051 · doi:10.1093/imammb/21.2.75
[10]Korobeinikov, A. (2009). Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence and non-linear incidence rate. Math. Med. Biol., 26, 225–239. · Zbl 1171.92034 · doi:10.1093/imammb/dqp006
[11]Korebeinikov, A., Wake, G.C. (1999). Global properties of three-dimensional predator-prey models. J. Appl. Math. Decis. Sci., 3(2), 155–162. · Zbl 0951.92031 · doi:10.1155/S1173912699000085
[12]LaSalle, J.P. (1964). Recent advances in Liapunov stability theory. SIAM Rev., 6, 1–11. · Zbl 0126.29809 · doi:10.1137/1006001
[13]Li, M.Y., Muldowney, J.S. (1995). Global stability for the seir model in epidemiology. Math. Biosci., 125(2), 155–164. · Zbl 0821.92022 · doi:10.1016/0025-5564(95)92756-5
[14]Marchuk, G.I., et al. (1991). Mathematical-model of antiviral immune-response. 2. Parameters identification for acute viral Hepatitis-B. J. Theor. Biol., 151(1), 41–70. · doi:10.1016/S0022-5193(05)80143-2
[15]Neumann, A.U., et al. (1998). Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science, 282(5386), 103–107. · doi:10.1126/science.282.5386.103
[16]Nowak, M.A., Bangham, C.R.M. (1996). Population dynamics of immune responses to persitent viruses. Science, 272, 74–79. · doi:10.1126/science.272.5258.74
[17]Nowak, M.A., May, R.M. (2000). Virus dynamics: mathematical principles of immunology and virology. Oxford: Oxford University Press.
[18]Pastore, D.H. (2005). A Dinâmica no sistema imunológico na presença de mutação. Ph.D. thesis, IMPA.
[19]Perelson, A.S., Nelson, P.W. (1999). Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev., 41, 3–44. · Zbl 1078.92502 · doi:10.1137/S0036144598335107
[20]Perelson, A.S., et al. (1993). Dynamics of HIV-infection of Cd4+ T-cells. Math. Biosci., 114(1), 81–125. · Zbl 0796.92016 · doi:10.1016/0025-5564(93)90043-A
[21]Perelson, A.S., et al. (1996). HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science, 271(5255), 1582–1586. · doi:10.1126/science.271.5255.1582
[22]Roy, A.B., Solimano, F. (1986). Global stability of partially closed food-chains with resources. Bull. Math. Biol., 48(5–6), 455–468.
[23]Smith, H.L. (1995). Monotone dynamical systems. Providence: AMS.