zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Second-order consensus for multi-agent systems with switching topology and communication delay. (English) Zbl 1225.93020
Summary: Two kinds of consensus problems for second-order agents under directed and arbitrarily switching topologies are investigated, that is, the cases without and with communication delay. For the former, by constructing a new kind of digraph and employing a new graphic method, we can specify the least convergence rate for all the agents to reach consensus. For the latter, in virtue of a matrix inequality method, a sufficient condition in the form of feasible matrix inequalities is presented for all the agents to reach consensus. This, on the other hand, shows that consensus can be reached if the delay is small enough. Finally, two numerical examples are given to demonstrate the effectiveness and advantages of the proposed results.
MSC:
93A14Decentralized systems
94C15Applications of graph theory to circuits and networks
93C30Control systems governed by other functional relations
References:
[1]Cao, M.; Morse, A. S.; Anderson, B. D. O.: Reaching a consensus in a dynamically changing environment: convergence rates, measurement delays, and asynchronous events, SIAM J. Control optim. 47, No. 2, 601-623 (2008) · Zbl 1157.93434 · doi:10.1137/060657029
[2]Jadbabaie, A.; Lin, J.; Morse, S. A.: Coordination of groups of mobile agents using nearest neighbor rules, IEEE trans. Automat. control 48, No. 6, 988-1001 (2003)
[3]Ji, Z.; Wang, Z.; Lin, H.; Wang, Z.: Controllability of multi-agent systems with time-delay in state and switching topology, Internat. J. Control 83, No. 2, 371-386 (2010) · Zbl 1184.93017 · doi:10.1080/00207170903171330
[4]Ji, Z.; Wang, Z.; Lin, H.; Wang, Z.: Interconnection topologies for multi-agent coordination under leader-follower framework, Automatica 45, No. 12, 2857-2863 (2009) · Zbl 1192.93013 · doi:10.1016/j.automatica.2009.09.002
[5]Lin, P.; Jia, Y.: Average consensus in networks of multi-agents with both switching topology and coupling time-delay, Physica A 387, No. 1, 303-313 (2008)
[6]Lan, Y.; Yan, G.; Lin, Z.: Distributed control of cooperative target enclosing based on reachability and invariance analysis, Syst. control lett. 59, No. 7, 381-389 (2010) · Zbl 1200.93105 · doi:10.1016/j.sysconle.2010.04.003
[7]Hatano, Y.; Mesbahi, M.: Agreement over random networks, IEEE trans. Automat. control 50, No. 11, 1867-1872 (2005)
[8]Ren, W.: Multi-vehicle consensus with a time-varying reference state, Syst. control lett. 56, No. 7–8, 474-483 (2007) · Zbl 1157.90459 · doi:10.1016/j.sysconle.2007.01.002
[9]Olfati-Saber, R.; Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays, IEEE trans. Automat. control 49, No. 9, 1520-1533 (2004)
[10]Ren, W.; Beard, R. W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE trans. Automat. control 50, No. 5, 655-661 (2005)
[11]Sun, Y. G.; Wang, L.; Xie, G.: Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays, Syst. control lett. 57, No. 2, 175-183 (2008) · Zbl 1133.68412 · doi:10.1016/j.sysconle.2007.08.009
[12]Sun, Y. G.; Wang, L.: Consensus of multi-agent systems in directed networks with nonuniform time-varying delays, IEEE trans. Automat. control 54, No. 7, 1607-1613 (2009)
[13]Xiao, F.; Wang, L.: State consensus for multi-agent systems with switching topologies and time-varying delays, Internat. J. Control 79, No. 10, 1277-1284 (2006)
[14]Fax, J. A.; Murray, R. M.: Information flow and cooperative control of vehicle formations, IEEE trans. Automat. control 49, No. 9, 1465-1476 (2004)
[15]Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory, IEEE trans. Automat. control 51, No. 3, 401-420 (2006)
[16]J. Qin, W.X. Zheng, H. Gao, Sampled-data consensus for multiple agents with discrete second-order dynamics, in: Proc. 49th IEEE Conf. Decision Control, Atlanta, GA, USA, 2010, pp. 1391–1396.
[17]Peng, K.; Yang, Y.: Leader-following consensus problem with a varying-velocity leader and time-varying delays, Physica A 388, No. 2–3, 193-208 (2009)
[18]Ren, W.: On consensus algorithms for double-integrator dynamics, IEEE trans. Automat. control 53, No. 6, 1503-1509 (2008)
[19]Ren, W.; Atkins, E. M.: Distributed multi-vehicle coordinated control via local information exchange, Internat. J. Robust nonlinear control 17, No. 10–11, 1002-1033 (2007)
[20]Tanner, H. G.; Jadbabaie, A.; Pappas, G. J.: Flocking in fixed and switching networks, IEEE trans. Automat. control 52, No. 5, 863-868 (2007)
[21]Xie, G.; Wang, L.: Consensus control for a class of networks of dynamic agents, Internat. J. Robust nonlinear control 17, No. 10–11, 941-959 (2007)
[22]Yu, W.; Chen, G.; Cao, M.: Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems, Automatica 46, No. 6, 1089-1095 (2010) · Zbl 1192.93019 · doi:10.1016/j.automatica.2010.03.006
[23]Yu, W.; Chen, G.; Cao, M.: Distributed leader-follower flocking control for multi-agent dynamical systems with time-varying velocities, Syst. control lett. 59, No. 9, 543-552 (2010) · Zbl 1207.37054 · doi:10.1016/j.sysconle.2010.06.014
[24]Zhu, J.; Tian, Y.; Kuang, J.: On the general consensus protocol of multi-agent systems with double-integrator dynamics, Linear algebra appl. 431, No. 5–7, 701-715 (2009) · Zbl 1165.93022 · doi:10.1016/j.laa.2009.03.019
[25]Godsil, C.; Doyle, G.: Algebraic graph theory, (2001)
[26]P. Lin, Y. Jia, J. Du, F. Yu, Distributed leadless coordination for networks of second-order agents with time-delay on switching topology, in: Proc. 2008 Amer. Control Conf., Seattle, WA, USA, 2008, pp. 1564–1569.
[27]Qin, J.; Gao, H.; Zheng, W. X.: On average consensus in directed networks of agents with switching topology and time-delay, Internat. J. Systems sci. (2010)
[28]F. Gouaisbaut, D. Peaucelle, A note on stability of time delay systems, in: Proc. 5th IFAC Symp. Robust Control Design, Toulouse, France, 2006.
[29]Gu, K.; Kharitonov, V. L.; Chen, J.: Stability of time-delay systems, (2003)
[30]Boyd, B.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in systems and control theory, (1994)