zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Impulsive hybrid discrete-time Hopfield neural networks with delays and multistability analysis. (English) Zbl 1225.93073
Summary: We investigate multistability of discrete-time Hopfield-type neural networks with distributed delays and impulses, by using Lyapunov functionals, stability theory and control by impulses. Examples and simulation results are given to illustrate the effectiveness of the results.
MSC:
93C55Discrete-time control systems
92B20General theory of neural networks (mathematical biology)
References:
[1]Akça, H.; Alassar, R.; Covachev, V.; Covacheva, Z.: Discrete counterparts of continuous-time additive Hopfield-type neural networks with impulses, Dynamic systems and applications 13, No. 1, 77-92 (2004) · Zbl 1058.34007
[2]Akça, H.; Alassar, R.; Covachev, V.; Yurtsever, H. A.: Discrete-time impulsive Hopfield neural networks with finite distributed delays, Computer assisted mechanics and engineering sciences 14, No. 2, 145-158 (2007) · Zbl 1122.92001
[3]Campbell, S. A.; Ncube, I.; Wu, J.: Multistability and stable asynchronous periodic oscillations in a multiple-delayed neural system, Physica D: Nonlinear phenomena 214, No. 2, 101-119 (2006) · Zbl 1100.34054 · doi:10.1016/j.physd.2005.12.008
[4]Cao, J.; Feng, G.; Wang, Y.: Multistability and multiperiodicity of delayed Cohen–Grossberg neural networks with a general class of activation functions, Physica D: Nonlinear phenomena 237, No. 13, 1734-1749 (2008) · Zbl 1161.34044 · doi:10.1016/j.physd.2008.01.012
[5]Cheng, C. -Y.; Lin, K. -H.; Shih, C. -W.: Multistability in recurrent neural networks, SIAM journal on applied mathematics 66, No. 4, 1301-1320 (2006) · Zbl 1106.34048 · doi:10.1137/050632440
[6]Cheng, C. -Y.; Lin, K. -H.; Shih, C. -W.: Multistability and convergence in delayed neural networks, Physica D: Nonlinear phenomena 225, No. 1, 61-74 (2007) · Zbl 1132.34058 · doi:10.1016/j.physd.2006.10.003
[7]Chua, Leon O.; Yang, Lin: Cellular neural networks: theory, IEEE transactions on circuits and systems 35, No. 10, 1257-1272 (1988) · Zbl 0663.94022 · doi:10.1109/31.7600
[8]Cohen, M. A.; Grossberg, S.: Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE transactions on systems, man, and cybernetics 13, No. 5, 815-826 (1983) · Zbl 0553.92009
[9]Hopfield, J. J.: Neural networks and physical systems with emergent collective computational abilities, Proceedings of the national Academy of sciences 79, 2554-2558 (1982)
[10]Huang, G.; Cao, J.: Multistability in bidirectional associative memory neural networks, Physics letters, section A: general, atomic and solid state physics 372, No. 16, 2842-2854 (2008) · Zbl 1220.92002 · doi:10.1016/j.physleta.2007.12.053
[11]Huang, G.; Cao, J.: Multistability of neural networks with discontinuous activation function, Communications in nonlinear science and numerical simulation 13, No. 10, 2279-2289 (2008) · Zbl 1221.34131 · doi:10.1016/j.cnsns.2007.07.005
[12]Huang, Z. -T.; Luo, X. -S.; Yang, Q. -G.: Global asymptotic stability analysis of bidirectional associative memory neural networks with distributed delays and impulse, Chaos, solitons and fractals 34, No. 3, 878-885 (2007) · Zbl 1154.34380 · doi:10.1016/j.chaos.2006.03.112
[13]Huang, Z.; Mohamad, S.; Bin, H.: Multistability of hnns with almost periodic stimuli and continuously distributed delays, International journal of systems science 40, No. 6, 615-625 (2009)
[14]Huang, Z.; Wang, X.; Xia, Y.: Exponential stability of impulsive Cohen–Grossberg networks with distributed delays, International journal of circuit theory and applications 36, No. 3, 345-365 (2008) · Zbl 1179.92003 · doi:10.1002/cta.424
[15]Huo, H. -F.; Li, W. -T.: Dynamics of continuous-time bidirectional associative memory neural networks with impulses and their discrete counterparts, Chaos, solitons and fractals 42, No. 4, 2218-2229 (2009) · Zbl 1198.34152 · doi:10.1016/j.chaos.2009.03.118
[16]Kaslik, E.; Balint, St.: Configurations of steady states for Hopfield-type neural networks, Applied mathematics and computation 182, No. 1, 934-946 (2006) · Zbl 1115.93062 · doi:10.1016/j.amc.2006.04.054
[17]Kaslik, E., & Sivasundaram, S. Multistability in impulsive hybrid hopfield neural networks with distributed delays. Nonlinear Analysis: Real World Applications, in press (doi:10.1016/j.nonrwa.2010.10.018).
[18]Kelin, L.; Zuoan, L.; Qiankun, S.: Behavior of impulsive fuzzy cellular neural networks with distributed delays, Electronic journal of differential equations, 1-16 (2007)
[19]Kosko, Bart: Bidirectional associative memories, IEEE transactions on systems, man and cybernetics 18, No. 1, 49-60 (1988)
[20]Li, K.: Stability analysis for impulsive Cohen–Grossberg neural networks with time-varying delays and distributed delays, Nonlinear analysis: real world applications 10, No. 5, 2784-2798 (2009) · Zbl 1162.92002 · doi:10.1016/j.nonrwa.2008.08.005
[21]Li, Y.; Hua, Y.; Fei, Y.: Global exponential stability of delayed Cohen–Grossberg BAM neural networks with impulses on time scales, Journal of inequalities and applications 2009 (2009) · Zbl 1180.34081 · doi:10.1155/2009/491268
[22]Li, Y.; Yang, C.: Global exponential stability analysis on impulsive BAM neural networks with distributed delays, Journal of mathematical analysis and applications 324, No. 2, 1125-1139 (2006) · Zbl 1102.68117 · doi:10.1016/j.jmaa.2006.01.016
[23]Li, K.; Zhang, X.; Li, Z.: Global exponential stability of impulsive cellular neural networks with time-varying and distributed delay, Chaos, solitons and fractals 41, No. 3, 1427-1434 (2009) · Zbl 1198.34154 · doi:10.1016/j.chaos.2008.06.003
[24]Liu, B.; Huang, L.: Global exponential stability of BAM neural networks with recent-history distributed delays and impulses, Neurocomputing 69, No. 16–18, 2090-2096 (2006)
[25]Mohamad, S.: Global exponential stability in continuous-time and discrete-time delayed bidirectional neural networks, Physica D: Nonlinear phenomena 159, No. 3–4, 233-251 (2001) · Zbl 0984.92502 · doi:10.1016/S0167-2789(01)00344-X
[26]Mohamad, S.: Global exponential stability in discrete-time analogues of delayed cellular neural networks, Journal of difference equations and applications 9, No. 6, 559-575 (2003) · Zbl 1045.65067 · doi:10.1080/1023619021000040524
[27]Mohamad, S.: Exponential stability preservation in discrete-time analogues of artificial neural networks with distributed delays, Journal of computational and applied mathematics 215, No. 1, 270-287 (2008) · Zbl 1154.39011 · doi:10.1016/j.cam.2007.04.009
[28]Mohamad, S.; Gopalsamy, K.: Dynamics of a class of discrete-time neural networks and their continuous-time counterparts, Mathematics and computers in simulation 53, No. 1–2, 1-39 (2000)
[29]Mohamad, S.; Gopalsamy, K.; Akça, H.: Exponential stability of artificial neural networks with distributed delays and large impulses, Nonlinear analysis: real world applications 9, No. 3, 872-888 (2008) · Zbl 1154.34042 · doi:10.1016/j.nonrwa.2007.01.011
[30]Morita, M.: Memory and learning of sequential patterns by nonmonotone neural networks, Neural networks 9, No. 8, 1477-1489 (1996)
[31]Nie, X.; Cao, J.: Multistability of competitive neural networks with time-varying and distributed delays, Nonlinear analysis: real world applications 10, No. 2, 928-942 (2009) · Zbl 1167.34383 · doi:10.1016/j.nonrwa.2007.11.014
[32]Ping, Z. W.; Lu, J. G.: Global exponential stability of impulsive Cohen–Grossberg neural networks with continuously distributed delays, Chaos, solitons and fractals 41, No. 1, 164-174 (2009) · Zbl 1198.34159 · doi:10.1016/j.chaos.2007.11.022
[33]Qu, H.; Yi, Z.: Convergence and periodicity of solutions for a class of discrete-time recurrent neural network with two neurons, Lncs 3971, 291-296 (2006)
[34]Shih, C. -W.; Tseng, J. -P.: Convergent dynamics for multistable delayed neural networks, Nonlinearity 21, No. 10, 2361-2389 (2008) · Zbl 1162.34002 · doi:10.1088/0951-7715/21/10/009
[35]Song, Q.; Cao, J.: Dynamical behaviors of discrete-time fuzzy cellular neural networks with variable delays and impulses, Journal of the franklin institute 345, No. 1, 39-59 (2008) · Zbl 1167.93369 · doi:10.1016/j.jfranklin.2007.06.001
[36]Wang, X.; Jiang, M.; Fang, S.: Stability analysis in Lagrange sense for a non-autonomous Cohen–Grossberg neural network with mixed delays, Nonlinear analysis, theory, methods and applications 70, No. 12, 4294-4306 (2009) · Zbl 1162.34338 · doi:10.1016/j.na.2008.09.019
[37]Wang, L.; Lu, W.; Chen, T.: Multistability of neural networks with a class of activation functions, Lncs 5551, 323-332 (2009)
[38]Wang, Y.; Xiong, W.; Zhou, Q.; Xiao, B.; Yu, Y.: Global exponential stability of cellular neural networks with continuously distributed delays and impulses, Physics letters, section A: general, atomic and solid state physics 350, No. 1–2, 89-95 (2006) · Zbl 1195.34064 · doi:10.1016/j.physleta.2005.10.084
[39]Xia, Y.; Huang, Z.; Han, M.: Exponential p-stability of delayed Cohen–Grossberg-type BAM neural networks with impulses, Chaos, solitons and fractals 38, No. 3, 806-818 (2008) · Zbl 1146.34329 · doi:10.1016/j.chaos.2007.01.009
[40]Yi, Z.; Tan, K. K.; Lee, T. H.: Multistability analysis for recurrent neural networks with unsaturating piecewise linear transfer functions, Neural computation 15, No. 3, 639-662 (2003) · Zbl 1085.68142 · doi:10.1162/089976603321192112
[41]Yi, Z.; Tan, K. K.: Multistability of discrete-time recurrent neural networks with unsaturating piecewise linear activation functions, IEEE transactions on neural networks 15, No. 2, 329-336 (2004)
[42]Yin, L.; Li, X.: Impulsive stabilization for a class of neural networks with both time-varying and distributed delays, Advances in difference equations 2009 (2009)
[43]Zhang, H.; Chen, L.: Asymptotic behavior of discrete solutions to delayed neural networks with impulses, Neurocomputing 71, No. 4–6, 1032-1038 (2008)
[44]Zhang, L.; Yi, Z.; Yu, J.; Heng, P. A.: Some multistability properties of bidirectional associative memory recurrent neural networks with unsaturating piecewise linear transfer functions, Neurocomputing 72, No. 16–18, 3809-3817 (2009)
[45]Zhao, X.: Qualitative analysis of general discrete-time recurrent neural networks with impulses, Lncs 5551, 128-137 (2009)
[46]Zhou, Q.: Global exponential stability of BAM neural networks with distributed delays and impulses, Nonlinear analysis: real world applications 10, No. 1, 144-153 (2009) · Zbl 1154.34391 · doi:10.1016/j.nonrwa.2007.08.019
[47]Zhou, J.; Li, S.: Global exponential stability of impulsive BAM neural networks with distributed delays, Neurocomputing 72, No. 7–9, 1688-1693 (2009)
[48]Zhou, L.; Li, C. -D.; Wan, J.: Global stability of discrete-time recurrent neural networks with impulse effects, International journal of nonlinear sciences and numerical simulation 10, No. 1, 93-97 (2009)