zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Weighted semi-trapezoidal approximations of fuzzy numbers. (English) Zbl 1226.03058
The author embeds fuzzy numbers into a Hilbert space H for computing their weighted semi-trapezoidal approximations via best approximations in a closed convex subset of H. Formulas of matricial type are given, thus improving results of A. I. Ban [Fuzzy Sets Syst. 160, No. 21, 3027–3047 (2009; Zbl 1183.03047); ibid. 160, No. 21, 3048–3058 (2009; Zbl 1183.03048)] and of the author [Fuzzy Sets Syst. 160, No. 21, 3059–3079 (2009; Zbl 1183.03058)].
MSC:
03E72Fuzzy set theory
References:
[1]Abadir, K. M.; Magnus, J. R.: Matrix algebra, (2005)
[2]Abbasbandy, S.; Asady, B.: The nearest trapezoidal fuzzy number to a fuzzy quantity, Applied mathematics and computation 156, 381-386 (2004) · Zbl 1058.03516 · doi:10.1016/j.amc.2003.07.025
[3]Abbasbandy, S.; Amirfakhrian, M.: The nearest trapezoidal form of a generalized left right fuzzy number, International journal of approximate reasoning 43, 166-178 (2006) · Zbl 1112.03316 · doi:10.1016/j.ijar.2006.04.001
[4]Abbasbandy, S.; Amirfakhrian, M.: The nearest approximation of a fuzzy quantity in parametric form, Applied mathematics and computation 172, 624-632 (2006) · Zbl 1097.41001 · doi:10.1016/j.amc.2005.02.019
[5]Abbasbandy, S.; Hajjari, T.: Weighted trapezoidal approximation preserving cores of a fuzzy numbers, Computers and mathematics with applications 59, 3066-3077 (2010) · Zbl 1193.26026 · doi:10.1016/j.camwa.2010.02.026
[6]Allahviranloo, T.; Firozja, M. A.: Note on ”trapezoidal approximation of fuzzy numbers”, Fuzzy sets and systems 158, 747-754 (2007) · Zbl 1119.03340 · doi:10.1016/j.fss.2006.10.017
[7]Ban, A. I.: Approximation of fuzzy numbers by trapezoidal fuzzy numbers preserving the expected interval, Fuzzy sets and systems 159, 1327-1344 (2008) · Zbl 1176.03024 · doi:10.1016/j.fss.2007.09.008
[8]Ban, A. I.: On the nearest parametric approximation of a fuzzy number — revisited, Fuzzy sets and systems 160, 3027-3047 (2009) · Zbl 1183.03047 · doi:10.1016/j.fss.2009.05.001
[9]Ban, A. I.: Triangular and parametric approximations of fuzzy numbers — inadvertences and corrections, Fuzzy sets and systems 160, 3048-3058 (2009) · Zbl 1183.03048 · doi:10.1016/j.fss.2009.04.003
[10]Beesack, P. R.; Pecaric, J.: Integral inequalities of Chebyshev’s type, Journal of mathematical analysis and applications 111, 643-659 (1985) · Zbl 0582.26005 · doi:10.1016/0022-247X(85)90241-0
[11]Chanas, S.: On the interval approximation of a fuzzy number, Fuzzy sets and systems 122, 353-356 (2001) · Zbl 1010.03523 · doi:10.1016/S0165-0114(00)00080-4
[12]Delgado, M.; Vila, M. A.; Voxman, W.: On a canonical representation of fuzzy number, Fuzzy sets and systems 93, 125-135 (1998) · Zbl 0916.04004 · doi:10.1016/S0165-0114(96)00144-3
[13]Deutsch, F.: Best approximation in inner product space, (2001)
[14]Grzegorzewski, P.: Metrics and orders in space of fuzzy numbers, Fuzzy sets and systems 97, 83-94 (1998) · Zbl 0930.03073 · doi:10.1016/S0165-0114(96)00322-3
[15]Grzegorzewski, P.: Nearest interval approximation of a fuzzy number, Fuzzy sets and systems 130, 321-330 (2002) · Zbl 1011.03504 · doi:10.1016/S0165-0114(02)00098-2
[16]Grzegorzewski, P.; Mrówka, E.: Trapezoidal approximations of fuzzy numbers, Fuzzy sets and systems 153, 115-135 (2005) · Zbl 1067.03508 · doi:10.1016/j.fss.2004.02.015
[17]Grzegorzewski, P.; Mrówka, E.: Trapezoidal approximations of fuzzy numbers — revisited, Fuzzy sets and systems 158, 757-768 (2007) · Zbl 1119.03052 · doi:10.1016/j.fss.2006.11.015
[18]Grzegorzewski, P.: Trapezoidal approximations of fuzzy numbers preserving the expected interval — algorithms and properties, Fuzzy sets and systems 159, 1354-1364 (2008) · Zbl 1176.03031 · doi:10.1016/j.fss.2007.12.001
[19]P. Grzegorzewski, L. Stefanini, Non-linear shaped approximation of fuzzy numbers, in: Proceedings of IFSA World Congress and Eusflat Conference IFSA/Eusflat 2009, pp. 1535 – 1540.
[20]Grzegorzewski, P.: Algorithms for trapezoidal approximations of fuzzy numbers preserving the expected interval, Foundations of reasoning under uncertainly, 85-98 (2010) · Zbl 1196.03074 · doi:10.1007/978-3-642-10728-3_5
[21]Hassine, R.; Karray, F.; Alimi, A. M.; Selmi, M.: Approximation properties of piece-wise parabolic functions fuzzy logic systems, Fuzzy sets and systems 157, 501-515 (2006) · Zbl 1083.41013 · doi:10.1016/j.fss.2005.07.004
[22]Ma, M.; Kandel, A.; Friedman, M.: A new approach for defuzzification, Fuzzy sets and systems 111, 351-356 (2000) · Zbl 0968.93046 · doi:10.1016/S0165-0114(98)00176-6
[23]Nasibov, E. N.; Peker, S.: On the nearest parametric approximation of a fuzzy number, Fuzzy sets and systems 159, 1365-1375 (2008) · Zbl 1176.03038 · doi:10.1016/j.fss.2007.08.005
[24]Rockafellar, R. T.: Convex analysis, (1970) · Zbl 0193.18401
[25]Yeh, C. -T.: A note on trapezoidal approximations of fuzzy numbers, Fuzzy sets and systems 158, 747-754 (2007) · Zbl 1119.03057 · doi:10.1016/j.fss.2006.11.017
[26]Yeh, C. -T.: On improving trapezoidal and triangular approximations of fuzzy numbers, International journal of approximate reasoning 48/1, 297-313 (2008) · Zbl 1189.03066 · doi:10.1016/j.ijar.2007.09.004
[27]Yeh, C. -T.: Trapezoidal and triangular approximations preserving the expected interval, Fuzzy sets and systems 159, 1345-1353 (2008) · Zbl 1176.03041 · doi:10.1016/j.fss.2007.09.010
[28]Yeh, C. -T.: Reduction to least-squares estimates in multiple fuzzy regression analysis, IEEE transactions on fuzzy systems 17/4, 935-948 (2009)
[29]Yeh, C. -T.: Weighted trapezoidal and triangular approximations of fuzzy numbers, Fuzzy sets and systems 160, 3059-3079 (2009) · Zbl 1183.03058 · doi:10.1016/j.fss.2009.05.008
[30]Zeng, W.; Li, H.: Weighted triangular approximation of fuzzy numbers, International journal of approximate reasoning 46/1, 137-150 (2007) · Zbl 1136.03332 · doi:10.1016/j.ijar.2006.11.001