zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An operator theoretical approach to a class of fractional order differential equations. (English) Zbl 1226.47048

Summary: We propose a general method for obtaining the representation of solutions for linear fractional order differential equations based on the theory of (a,k)-regularized families of operators. We illustrate the method for the case of the fractional order differential equation

D t α u ' (t)+μD t α u(t)=Au(t)+t -α Γ(1-α)(u ' (0)+μu(0))+f(t),t>0,0<α1,μ0,

where A is an unbounded closed operator defined on a Banach space X and f is an X-valued function.

47D60C-semigroups, regularized semigroups
34A08Fractional differential equations
[1]Araya, D.; Lizama, C.: Almost automorphic mild solutions to fractional differential equations, Nonlinear anal. TMA 69, 3692-3705 (2008) · Zbl 1166.34033 · doi:10.1016/j.na.2007.10.004
[2]E. Bazhlekova, Fractional evolution equations in Banach spaces, Ph.D. Thesis, Eindhoven University of Technology, 2001. · Zbl 0989.34002
[3]Hilfer, R.: Applications of fractional calculus in physics, (2000)
[4]Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, (2006)
[5]Heymans, N.; Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives, Rheol. acta 45, No. 5, 765-771 (2006)
[6]Podlubny, I.: Fractional differential equations, (1999)
[7]Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications, (1993) · Zbl 0818.26003
[8]R. Gorenflo, F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order, in: CIMS Lecture Notes, 1997, http://arxiv.org/0805.3823.
[9]Baeumer, B.; Meerschaert, M. M.; Nane, E.: Brownian subordinators and fractional Cauchy problems, Trans. amer. Math. soc. 361, No. 7, 3915-3930 (2009) · Zbl 1186.60079 · doi:10.1090/S0002-9947-09-04678-9
[10]Nane, E.: Higher order PDE’s and iterated processes, Trans. amer. Math. soc. 360, No. 5, 2681-2692 (2008) · Zbl 1157.60071 · doi:10.1090/S0002-9947-07-04437-6
[11]V. Keyantuo, C. Lizama, On a connection between powers of operators and fractional Cauchy problems (submitted for publication).
[12]Prüss, J.: Evolutionary integral equations and applications, Monographs math. 87 (1993) · Zbl 0784.45006
[13]Gorenflo, R.; Mainardi, F.: On Mittag–Leffler-type functions in fractional evolution processes, J. comput. Appl. math. 118, 283-299 (2000) · Zbl 0970.45005 · doi:10.1016/S0377-0427(00)00294-6
[14]Gorenflo, R.; Mainardi, F.: Fractional calculus: integral and differential equations of fractional order, Fractals and fractional calculus in continuum mechanics, 223-276 (1997)
[15]Arendt, W.; Batty, C.; Hieber, M.; Neubrander, F.: Vector-valued Laplace transforms and Cauchy problems, Monographs in mathematics 96 (2001) · Zbl 0978.34001
[16]Lizama, C.: Regularized solutions for abstract Volterra equations, J. math. Anal. appl. 243, 278-292 (2000) · Zbl 0952.45005 · doi:10.1006/jmaa.1999.6668
[17]Kostic, M.: (a,k)-regularized C-resolvent families: regularity and local properties, Abstr. appl. Anal. 2009 (2009) · Zbl 1200.47059 · doi:10.1155/2009/858242
[18]Lizama, C.: On approximation and representation of k-regularized resolvent families, Integral equations operator theory 41, No. 2, 223-229 (2001) · Zbl 1011.45006 · doi:10.1007/BF01295306
[19]Lizama, C.; Prado, H.: Rates of approximation and ergodic limits of regularized operator families, J. approx. Theory 122, No. 1, 42-61 (2003) · Zbl 1032.47024 · doi:10.1016/S0021-9045(03)00040-6
[20]Lizama, C.; Sánchez, J.: On perturbation of k-regularized resolvent families, Taiwanese J. Math. 7, No. 2, 217-227 (2003) · Zbl 1051.45009
[21]Lizama, C.; Prado, H.: On duality and spectral properties of (a,k)-regularized resolvents, Proc. roy. Soc. Edinburgh sect. A 139, No. 3, 505-517 (2009) · Zbl 1206.47037 · doi:10.1017/S0308210507000364
[22]Shaw, S. Y.; Chen, J. C.: Asymptotic behavior of (a,k)-regularized families at zero, Taiwanese J. Math. 10, No. 2, 531-542 (2006) · Zbl 1106.45004
[23]Engel, K. J.; Nagel, R.: One-parameter semigroups for linear evolution equations, Graduate texts in math. 194 (2000)