zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An application of exp-function method to approximate general and explicit solutions for nonlinear Schrödinger equations. (English) Zbl 1226.65087
Summary: We implement a relatively new analytical technique, the exp-function method, for solving nonlinear equations and absolutely a special form of generalized nonlinear Schrödinger equations, which may contain high-nonlinear terms. This method can be used as an alternative to obtain analytical and approximate solutions of different types of fractional differential equations, which is applied in engineering mathematics. Some numerical examples are presented to illustrate the efficiency and the reliability of exp-function method. It is predicted that exp-function method can be found widely applicable in engineering.
MSC:
65M70Spectral, collocation and related methods (IVP of PDE)
35Q55NLS-like (nonlinear Schrödinger) equations