×

A note on the complexity of \(L _{p }\) minimization. (English) Zbl 1226.90076

Summary: We discuss the \(L _{p } (0 \leq p < 1)\) minimization problem arising from sparse solution construction and compressed sensing. For any fixed \(0 < p < 1\), we prove that finding the global minimal value of the problem is strongly NP-Hard, but computing a local minimizer of the problem can be done in polynomial time. We also develop an interior-point potential reduction algorithm with a provable complexity bound and demonstrate preliminary computational results of effectiveness of the algorithm.

MSC:

90C26 Nonconvex programming, global optimization
90C51 Interior-point methods
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Berinde, R., Gilbert, A.C., Indyk, P., Karloff, H.J., Strauss, M.J.: Combining geometry and combinatorics: a unified approach to sparse signal recovery, preprint (2008)
[2] Bertsekas D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999) · Zbl 1015.90077
[3] Bertsimas D., Tsitsiklis J.: Introduction to Linear Optimization, pp. 414. Athena Scientific, Belmont (1997)
[4] Blumensath T., Davies M.: Iterative hard thresholding for compressed sensing. Appl. Comp. Harmonic Anal. 27, 265–274 (2009) · Zbl 1174.94008 · doi:10.1016/j.acha.2009.04.002
[5] Borwein, J.M., Luke, D.R.: Entropic Regularization of the ł0 function, In: Fixed-point algorithms for Inverse Problems in Science and Engineering in Springer optimization and its Applications (2010) · Zbl 1357.49115
[6] Bruckstein A.M., Donoho D.L., Elad M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34C81 (2009) · Zbl 1178.68619
[7] Candès E.J., Tao T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51, 4203–4215 (2005) · Zbl 1264.94121 · doi:10.1109/TIT.2005.858979
[8] Candès E.J., Tao T.: Near optimal signal recovery from random projections: Universal encoding strategies. IEEE Trans. Inf. Theory 52, 5406–5425 (2006) · Zbl 1309.94033 · doi:10.1109/TIT.2006.885507
[9] Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14–10 (2009)
[10] Chartrand, R.: Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data, In: IEEE International Symposium on Biomedical Imaging (ISBI) (2009)
[11] Chen,X., Xu, F., Ye, Y.: Lower bound theory of nonzero entries in solutions of 2- p minimization, Technical Report, The Hong Kong, Polytechnic University (2009)
[12] Donoho, D.: For most large underdetermined systems of linear equations the minimal l 1-norm solution is also the sparsest Solution, Technical Report, Stanford University (2004) · Zbl 1113.15004
[13] Fan J., Li R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Soc. 96, 1348–1360 (2001) · Zbl 1073.62547 · doi:10.1198/016214501753382273
[14] Gilbert, A.C., Muthukrishnan, M., Strauss, M.J.: Approximation of functions over redundant dictionaries using coherence, In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2003) · Zbl 1094.41500
[15] Garey M.R., Johnson D.S.: Strong NP-Completeness: results, motivation examples and implications. J. Assoc. Comput. Mach. 25, 499–508 (1978) · Zbl 0379.68035 · doi:10.1145/322077.322090
[16] Garey M.R., Johnson D.S.: Computers and Intractability A Guide to the Theory of NP-Completeness, pp. 96–105. W. H. Freeman, San Francisco (1979) · Zbl 0411.68039
[17] Mourad N., Reilly P.: Minimizing nonconvex functions for sparse vector reconstruction. IEEE Trans. Signal Process. 58, 3485–3496 (2010) · Zbl 1391.90492 · doi:10.1109/TSP.2010.2046900
[18] Nesterov Y., Nemirovski A.: Interior Point Polynomial Methods in Convex Programming. SIAM, Philadelphia, PA (1994)
[19] Natarajan B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24, 227–234 (1995) · Zbl 0827.68054 · doi:10.1137/S0097539792240406
[20] Terlaky T.: On p programming. Eur. J. Oper. Res. 22, 70–100 (1985) · Zbl 0577.90062 · doi:10.1016/0377-2217(85)90116-X
[21] Tropp J.A.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Info. Theory 50, 2231–2242 (2004) · Zbl 1288.94019 · doi:10.1109/TIT.2004.834793
[22] Tropp, J., Wright, S.J.: Computational methods for sparse solutions of linear inverse problems. In: Proceedings of the IEEE (2010)
[23] Vavasis S.A.: Polynomial time weak approximation algorithms for quadratic programming. In: Floudas, C.A., Pardalos, P.M. (eds) Complexity in Numerical Optimization, World Scientific, New Jersey (1993) · Zbl 0968.90503
[24] Vazirani V.: Approximation Algorithms. Springer, Berlin (2003)
[25] Xue G., Ye Y.: An efficient algorithm for minimizing a sum of P-norms. SIAM J. Optim. 10, 551–579 (2000) · Zbl 0955.68126 · doi:10.1137/S1052623497327088
[26] Ye Y.: On the complexity of approximating a KKT point of quadratic programming. Math. Progr. 80, 195–211 (1998) · Zbl 0894.90117 · doi:10.1007/BF01581726
[27] Ye Y.: Interior Point Algorithms: Theory and Analysis. Wiley, New York (1997) · Zbl 0943.90070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.