[1] | Anderson E.J., Nash P.: Linear Programming in Infinite-Dimensional Spaces. Wiley, Chicherster (1987) |

[2] | Bt R.I., Grad S.-M., Wanka G.: On strong and total Lagrange duality for convex optimization problems. J. Math. Anal. Appl. 337, 1315–1325 (2008) · Zbl 1160.90004 · doi:10.1016/j.jmaa.2007.04.071 |

[3] | Burachik R.S., Jeyakumar V.: A dual condition for the convex subdifferential sum formula with applications. J. Convex Anal. 12, 279–290 (2005) |

[4] | Craven B.D.: Mathematical Programming and Control Theory. Chapman and Hall, London (1978) |

[5] | Dempe S.: Foundations of Bilevel Programming. Kluwer, Dordrecht (2002) |

[6] | Dempe S., Dutta J., Mordukhovich B.S.: New necessary optimality conditions in optimistic bilevel programming. Optimization 56, 577–604 (2007) · Zbl 1172.90481 · doi:10.1080/02331930701617551 |

[7] | Demyanov V.F., Rubinov A.M.: Constructive Nonsmooth Analysis. Peter Lang, Frankfurt (1995) |

[8] | Dinh N., Goberna M.A., López M.A., Son T.Q.: New Farkas-type results with applications to convex infinite programming. ESAIM: Control Optim. Cal. Var. 13, 580–597 (2007) · Zbl 1126.90059 · doi:10.1051/cocv:2007027 |

[9] | Dinh, N., Goberna, M.A., López, M.A.: On stability of convex infinite programming problems. Preprint (2008) |

[10] | Dinh, N., Nghia, T.T.A., Vallet, G.: A closedness condition and its applications to DC programs with convex constraints. Optimization, to appear (2008) |

[11] | Dinh N., Vallet G., Nghia T.T.A.: Farkas-type results and duality for DC programs with convex constraints. J. Convex Anal. 15, 235–262 (2008) |

[12] | Fabian M. et al.: Functional Analysis and Infinite-Dimensional Geometry. Springer, New York (2001) |

[13] | Goberna M.A., López M.A.: Linear Semi-Infinite Optimization. Wiley, Chichester (1998) |

[14] | Jeyakumar V.: Asymptotic dual conditions characterizing optimality for convex programs. J. Optim. Theory Appl. 93, 153–165 (1997) · Zbl 0901.90158 · doi:10.1023/A:1022606002804 |

[15] | Jeyakumar, V., Dinh, N., Lee, G.M.: A new closed cone constraint qualification for convex optimization. Applied Mathematics Research Report AMR04/8, School of Mathematics, University of New South Wales, Australia, http://www.maths.unsw.edu.au/applied/reports/amr08.html (2004) |

[16] | Mordukhovich B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory. Springer, Berlin (2006a) |

[17] | Mordukhovich B.S.: Variational Analysis and Generalized Differentiation, II: Applications. Springer, Berlin (2006b) |

[18] | Mordukhovich B.S., Nam N.M.: Variational stability and marginal functions via generalized differentiation. Math. Oper. Res. 30, 800–816 (2005) · Zbl 05279643 · doi:10.1287/moor.1050.0147 |

[19] | Mordukhovich B.S., Nam N.M., Yen N.D.: Subgradients of marginal functions in parametric mathematical programming. Math. Prog. 116, 369–396 (2009) · Zbl 1177.90377 · doi:10.1007/s10107-007-0120-x |

[20] | Mordukhovich B.S., Shao Y.: Nonsmooth sequential analysis in Asplund spaces. Trans. Am. Math. Soc. 248, 1230–1280 (1996) |

[21] | Phelps R.R.: Convex Functions, Monotone Operators and Differentiability, 2nd edn. Springer, Berlin (1993) |

[22] | Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1970) |

[23] | Rockafellar R.T., Wets R.J-B.: Variational Analysis. Springer, Berlin (1998) |

[24] | Schirotzek W.: Nonsmooth Analysis. Springer, Berlin (2007) |

[25] | Ye J.J., Zhu D.L.: Optimality conditions for bilevel programming problems. Optimization 33, 9–27 (1995) · Zbl 0820.65032 · doi:10.1080/02331939508844060 |

[26] | Zălinescu C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002) |