zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On iterative methods with accelerated convergence for solving systems of nonlinear equations. (English) Zbl 1226.90103
Summary: We present a modified method for solving nonlinear systems of equations with order of convergence higher than other competitive methods. We generalize also the efficiency index used in the one-dimensional case to several variables. Finally, we show some numerical examples, where the theoretical results obtained in this paper are applied.
MSC:
90C30Nonlinear programming
Software:
MPFR
References:
[1]Ostrowski, A.M.: Solutions of Equations in Euclidean and Banach Spaces. Academic Press, New York (1973)
[2]Argyros, I.K., Chen, D., Qian, Q.: A local convergence theorem for the super-Halley method in a Banach space. Appl. Math. Lett. 7(5), 49–52 (1994)
[3]Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs (1964)
[4]Grau, M., Díaz-Barrero, J.L.: An improvement of the Euler–Chebyshev iterative method. J. Math. Anal. Appl. 315, 1–7 (2006) · Zbl 1113.65048 · doi:10.1016/j.jmaa.2005.09.086
[5]Schröder, E.: Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 2, 317–365 (1870) · Zbl 02721025 · doi:10.1007/BF01444024
[6]Grau-Sánchez, M., Grau, A., Noguera, M.: Frozen divided difference scheme for solving systems of nonlinear equations. J. Comput. Appl. Math. 235, 1739–1743 (2011) · Zbl 1204.65051 · doi:10.1016/j.cam.2010.09.019
[7]Potra, F.A., Pták, V.: A generalization of Regula Falsi. Numer. Math. 36, 333–346 (1981) · Zbl 0478.65039 · doi:10.1007/BF01396659
[8]Potra, F.A., Pták, V.: Nondiscrete Induction and Iterative Processes. Research Notes in Mathematics, vol. 103. Wiley, Boston–London–Melbourne (1984)
[9]Polyanin, A.D., Manzhirov, A.V.: Handbook of Integral Equations. CRC Press, Boca Ratón (1998)
[10]Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000) · Zbl 0973.65037 · doi:10.1016/S0893-9659(00)00100-2
[11]Chandrasekhar, D.: Radiative Transfer. Dover, New York (1960)
[12]Argyros, I.K.: Quadratic equations and applications to Chandrasekhar’s and related equations. Bull. Aust. Math. Soc. 32(2), 275–292 (1985) · Zbl 0607.47063 · doi:10.1017/S0004972700009953
[13]Argyros, I.K.: On a class of nonlinear integral equations arising in neutron transport. Aequ. Math. 35, 99–111 (1988) · Zbl 0657.45001 · doi:10.1007/BF01837974
[14]Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A., Salanova, M.A.: Solving nonlinear integral equations arising in radiative transfer. Numer. Funct. Anal. Optim. 20, 661–673 (1999) · Zbl 0942.47043 · doi:10.1080/01630569908816917
[15]Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 15 (2007) · Zbl 05458464 · doi:10.1145/1236463.1236468
[16]http://www.mpfr.org/mpfr-2.1.0/timings.html