zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Impact of intracellular delay, immune activation delay and nonlinear incidence on viral dynamics. (English) Zbl 1226.92049

Summary: This paper investigates a class of viral infection models with a nonlinear infection rate and two discrete delays, one of which represents an intracellular latent period for the contacted target cell with the virus to begin producing virions, the other of which represents the time needed in cytotoxic T cells (CTLs) response before immune becomes effective after a novel pathogen invades. Since the immune system is a complex network of cells and signals that have evolved to respond to the presence of pathogens, we further assume two situations for immune activation delay. When both delays are ignored, the global stability for the ordinary differential equations model are established. While both delays are included, the positivity and boundedness of all solutions of the delay differential equations model are proved. Utilizing Lyapunov functionals and the LaSalle invariance principle, the global dynamical properties are also studied.

In particular, stability switch is shown to occur as immune delay increasing by bifurcation theory. Our results exhibit that the intracellular delay does not affect the stability of equilibria. However, the immune activation delay is able to destabilize the interior equilibrium and brings periodic solutions. Numerical simulations are performed to verify the theoretical results and display the different impacts of two type delays in two cases. Those analysis give us some useful suggestions on new drugs to fight against viral infection such that it is effective for the drugs to prolong the latent period, and/or to reduce the activation delay of CTLs immune response and/or to inhibit infection.

MSC:
92C60Medical epidemiology
34K20Stability theory of functional-differential equations
34K13Periodic solutions of functional differential equations
34D23Global stability of ODE
34K60Qualitative investigation and simulation of models
37N25Dynamical systems in biology
65C20Models (numerical methods)
References:
[1]Anderson R., May R.M.: The population dynamics of microparasites and their invertebrate hosts. Philo. T. Roy. Soc. B. 291, 451–524 (1981) · doi:10.1098/rstb.1981.0005
[2]Beretta E., Kuang Y.: Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal. 33, 1144–1165 (2002) · Zbl 1013.92034 · doi:10.1137/S0036141000376086
[3]Beretta, E., Carletti, M., Kirschner D.E., Marino, S.: Stability analysis of a mathematical model of the immune response with delays, In: Mathematics for life science and medicine, pp. 177–206 (2007)
[4]Buric N., Mudrinic M., Vasovic N.: Time delay in a basic model of the immune response. Chaos Solut. Fractals 12, 483–489 (2001) · Zbl 1026.92015 · doi:10.1016/S0960-0779(99)00205-2
[5]Canabarro A.A, Gleria I.M., Lyra M.L.: Periodic solutions and chaos in a non-linear model for the delayed celluar immune response. Phys. A 342, 483–489 (2004)
[6]Culshaw R.V., Ruan S.: A delay-differential equation model of HIV infection of CD4+ T-cells. Math. Biosci. 165, 27–39 (2000) · Zbl 0981.92009 · doi:10.1016/S0025-5564(00)00006-7
[7]Ebert D., Zschokke-Rohringer C.D., Carius H.J.: Does effects and density-dependent regulation of two microparasites of Daphnia magna. Oecologia 122, 200–209 (2000) · doi:10.1007/PL00008847
[8]Fenton A., Lello J., Bonsall M. B.: Pathogen responses to host immunity: the impact of time delays and memory on the evolution of virulence. Proc. R. Soc. B. 273, 2083–2090 (2006) · doi:10.1098/rspb.2006.3552
[9]Gourley S.A., Kuang Y., Nagy D.: Dynamics of a delay differential model of hepatitis B virus infection. J. Biol. Dyn. 2, 140–153 (2008) · Zbl 1140.92014 · doi:10.1080/17513750701769873
[10]Herz V., Bonhoeffer S., Anderson R., May R.M., Nowak M.A.: Viral dynamics in vivo: limitations on estimations on intracellular delay and virus delay. Proc. Natl. Acad. Sci. USA 93, 7247–7251 (1996) · doi:10.1073/pnas.93.14.7247
[11]Huang G., Takeuchi Y., Ma W.: Lyapunov functionals for delay differential equations model for viral infections. SIAM J. Appl. Math. 70, 2693–2708 (2010) · Zbl 1209.92035 · doi:10.1137/090780821
[12]Kajiwara T., Sasaki T.: A note on the stability analysis of pathogen–immune interaction dynamics. Disc. Cont. Dyn. Sys. B. 4, 615–622 (2004)
[13]Korobeinikov A.: Global properties of basic virus dynamics models. Bull. Math. Biol. 66, 879–883 (2004) · doi:10.1016/j.bulm.2004.02.001
[14]Korobeinikov A.: Global asymptotic properties of virus dynamics models with dose dependent parasite reproduction and virulence, and nonlinear incidence rate. Math. Med. Biol. 26, 225–239 (2009) · Zbl 1171.92034 · doi:10.1093/imammb/dqp006
[15]Korobeinikov A.: Stability of ecosystem: global properties of a general prey-predator model. Math. Med. Biol. 26, 309–321 (2009) · Zbl 1178.92053 · doi:10.1093/imammb/dqp009
[16]Korobeinikov A.: Global properties of infectious disease models with non-linear incidence. Bull. Math. Biol. 69, 1871–1886 (2007) · Zbl 05265715 · doi:10.1007/s11538-007-9196-y
[17]Kuang Y.: Delay Differential Equations with Applications in Population Dynamics. Academics Press, San Diego (1993)
[18]Li, M.Y., Shu, H.: Multiple stable periodic oscillations in a mathematical model of CTL response to HTLV-1 infection. Bull. Math. Biol. doi: 10.1007/sl1538-010-9591-7 (in press)
[19]Mittler J.E., Sulzer B., Neumann A.U., Perelson A.: Influence of delayed viral production on viral dynamics in HIV-1 infected patients. Math. Biosci. 152, 143–163 (1998) · Zbl 0946.92011 · doi:10.1016/S0025-5564(98)10027-5
[20]Nelson P., Murray J., Perelson A.: A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci. 163, 201–215 (2000) · Zbl 0942.92017 · doi:10.1016/S0025-5564(99)00055-3
[21]Nelson P., Perelson A.: Mathematical analysis of delay differential equation models of HIV-1 infection. Math. Biosci. 179, 73–94 (2002) · Zbl 0992.92035 · doi:10.1016/S0025-5564(02)00099-8
[22]Nowak M.A., Bangham C.R.M.: Population dynamics of immune responses to persistent virus. Science 272, 74–79 (1996) · doi:10.1126/science.272.5258.74
[23]Nowak M.A., May R.M., Sigmund K.: Immune responses against multiple epitopes. J. Theoret. Biol. 175, 325–353 (1995) · doi:10.1006/jtbi.1995.0146
[24]Pang H., Wang W., Wang K.: Global properties of virus dynamics with CTL immune response. J. Southw. China Normal Univ. 30, 797–799 (2005)
[25]Perelson A., Kirschner D.E., De Boer R.: Dynamics of HIV infection of CD4+ T cell. Math. Biosci. 114, 81–125 (1993) · Zbl 0796.92016 · doi:10.1016/0025-5564(93)90043-A
[26]Song X., Wang S., Zhou X.: Stability and Hopf bifurcation for a viral infection model with delayed non-lytic immune response. J. Appl. Math. Comput. 33, 251–265 (2010) · Zbl 1203.34134 · doi:10.1007/s12190-009-0285-y
[27]Tam J.: Delay effect in a model for virus replication. IMA J. Math. Appl. Med. Biol. 16, 29–37 (1999) · doi:10.1093/imammb/16.1.29
[28]Wang Y., Zhou Y., Wu J., Heffernan J.: Oscillatory viral dynamics in a delay HIV pathogenesis model. Math. Biosci. 219, 104–112 (2009) · Zbl 1168.92031 · doi:10.1016/j.mbs.2009.03.003
[29]Wang K., Wang W., Pang H., Liu X.: Complex dynamic behavior in a viral model with delay immune response. Phys. D. 226, 197–208 (2007) · Zbl 1117.34081 · doi:10.1016/j.physd.2006.12.001
[30]Wodarz D.: Hepatitis C virus dynamics and pathology: the role of CTL and antibody responses. J. Gen. Virol. 84, 1743–1750 (2003) · doi:10.1099/vir.0.19118-0
[31]Xu R., Ma Z.: An HBV model with diffusion and time delay. J. Theoret. Biol. 257, 499–509 (2009) · doi:10.1016/j.jtbi.2009.01.001
[32]Zhu H., Zuo X.: Dynamics of an HIV-1 infection model with cell-mediated immune response and intracellular delay. Disc. Cont. Dyn. Sys. B. 12, 511–524 (2009)