zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust reliable stabilization of uncertain switched neutral systems with delayed switching. (English) Zbl 1227.34075
The authors mix various existing ideas to derive matrix conditions for the stabilization of a linear system subject to uncertainty, switching and delay.
MSC:
34K35Functional-differential equations connected with control problems
34K20Stability theory of functional-differential equations
93B50Synthesis problems
References:
[1]Engell, S.; Kowalewski, S.; Schulz, C.; Strusberg, O.: Continuous-discrete interactions in chemical processing plants, Proceedings of the IEEE 88, No. 7, 1050-1068 (2000)
[2]Horowitz, R.; Varaiya, P.: Control design of an automated highway system, Proceedings of the IEEE 88, No. 7, 913-925 (2000)
[3]Livadas, C.; Lygeros, J.; Lynch, N. A.: High-level modeling and analysis of the traffic alert and collision avoidance system, Proceedings of the IEEE 88, No. 7, 926-948 (2000)
[4]Pepyne, D.; Cassandaras, C.: Optimal control of hybrid systems in manufacturing, Proceedings of the IEEE 88, No. 7, 1008-1122 (2000)
[5]Song, M.; Tarn, T. J.; Xi, N.: Integration of task scheduling, action planning, and control in robotic manufacturing systems, Proceedings of the IEEE 88, No. 7, 1097-1107 (2000)
[6]Antsaklis, P. J.: Special issue on hybrid systems: theory and applications: A brief introduction to the theory and applications of hybrid systems, Proceedings of the IEEE 88, No. 7, 887-897 (2000)
[7]Sun, Z.: Combined stabilizing strategies for switched linear systems, IEEE transactions on automatic control 51, No. 4, 666-674 (2006)
[8]Cheng, D.; Guo, L.; Lin, Y.; Wang, Y.: Stabilization of switched linear systems, IEEE transactions on automatic control 50, No. 5, 661-666 (2005)
[9]Lin, H.; Antsaklis, P. J.: Stability and stabilizability of switched linear systems: a survey of recent results, IEEE transactions on automatic control 54, No. 2, 308-322 (2009)
[10]Hespanha, J. P.; Liberzon, D.; Angeli, D.; Sontag, E. D.: Nonlinear norm-observability notions and stability of switched systems, IEEE transactions on automatic control 50, No. 2, 154-168 (2005)
[11]Hespanha, J. P.: Uniform stability of switched linear systems: extension of lasalle’s invariance principle, IEEE transactions on automatic control 49, No. 4, 470-482 (2004)
[12]Wang, R.; Zhao, J.: Guaranteed cost control for a class of uncertain switched delay systems: an average Dwell-time method, Cybernetics and systems 38, No. 1, 105-122 (2007) · Zbl 1111.93016 · doi:10.1080/01969720600998660
[13]Li, Q. K.; Zhao, J.; Dimirovski, G. M.: Tracking control for switched time-varying delays systems with stabilizable and unstabilizable subsystems, Nonlinear analysis: hybrid systems 3, No. 2, 133-142 (2009) · Zbl 1166.93325 · doi:10.1016/j.nahs.2008.11.004
[14]Zhai, G. S.; Hu, B.; Yasuda, K.; Michel, A. N.: Disturbance attenuation properties of time-controlled switched systems, Journal of the franklin institute 338, No. 7, 765-779 (2001) · Zbl 1022.93017 · doi:10.1016/S0016-0032(01)00030-8
[15]Liu, J.; Liu, X. Z.; Xie, W. C.: Delay-dependent robust control for uncertain switched systems with time-delay, Nonlinear analysis: hybrid systems 2, No. 1, 81-95 (2008) · Zbl 1157.93362 · doi:10.1016/j.nahs.2007.04.001
[16]Mohamad, M. S.; Alwan, S.; Liu, X. Z.: On stability of linear and weakly nonlinear switched systems with time delay, Mathematical and computer modeling 48, No. 7 – 8, 1150-1157 (2008) · Zbl 1187.34067 · doi:10.1016/j.mcm.2007.12.024
[17]Niamsup, P.: Controllability approach to H control problem of linear time-varying switched systems, Nonlinear analysis: hybrid systems 2, No. 3, 875-886 (2008) · Zbl 1215.93043 · doi:10.1016/j.nahs.2008.02.001
[18]Lien, C. H.; Yu, K. W.: Non-fragile H control for uncertain neutral systems with time-varying delays via the LMI optimization approach, IEEE transactions on systems, man, and cybernetics, part B 37, No. 2, 493-499 (2007)
[19]Kwon, O. M.; Park, J. H.; Lee, S. M.: Augmented Lyapunov functional approach to stability of uncertain neutral systems with time-varying delays, Applied mathematics and computation 207, No. 1, 202-212 (2009) · Zbl 1178.34091 · doi:10.1016/j.amc.2008.10.018
[20]Kwon, O. M.; Park, J. H.; Lee, S. M.: On delay-dependent robust stability of uncertain neutral systems with interval time-varying delays, Applied mathematics and computation 203, No. 2, 843-853 (2008) · Zbl 1168.34046 · doi:10.1016/j.amc.2008.05.094
[21]Kwon, O. M.; Park, J. H.; Lee, S. M.: On stability criteria for uncertain delay-differential systems of neutral type with time-varying delays, Applied mathematics and computation 197, No. 2, 864-873 (2008) · Zbl 1144.34052 · doi:10.1016/j.amc.2007.08.048
[22]Wang, R.; Liu, M.; Zhao, J.: Reliable H control for a class of switched nonlinear systems with actuator failures, Nonlinear analysis: hybrid systems 1, No. 3, 317-325 (2007) · Zbl 1118.93351 · doi:10.1016/j.nahs.2006.11.002
[23]Wang, R.; Dimirovski, G. M.; Zhao, J.; Liu, G. P.: Output feedback control for uncertain linear systems with faulty actuators based on a switching method, International journal of robust and nonlinear control 19, No. 12, 1295-1312 (2008) · Zbl 1169.93393 · doi:10.1002/rnc.1379
[24]Wang, R.; Jin, G.; Zhao, J.: Roust fault-tolerant control for a class of switched nonlinear systems in lower triangular form, Asian journal of control 9, No. 1, 68-72 (2007)
[25]Xiang, Z.; Wang, R.: Robust L reliable control for uncertain nonlinear switched systems with time delay, Applied mathematics and computation 210, No. 1, 202-210 (2009) · Zbl 1159.93322 · doi:10.1016/j.amc.2008.12.074
[26]Sen, M. D.; Malaina, J. L.; Gallego, A.; Soto, J. C.: Stability of non-neutral and neutral dynamic switched systems subject to internal delays, American journal of applied sciences 2, No. 10, 1481-1490 (2005)
[27]Sun, X. M.; Fu, J.; Sun, H. F.; Zhao, J.: Stability of linear switched neutral delay systems, Proceedings of the chinese society for electrical engineering 25, No. 23, 42-46 (2005)
[28]Zhang, Y.; Liu, X.; Zhu, H.: Stability analysis and control synthesis for a class of switched neutral systems, Applied mathematics and computation 190, No. 2, 1258-1266 (2007) · Zbl 1117.93062 · doi:10.1016/j.amc.2007.02.011
[29]Liu, D. Y.; Liu, X. Z.; Zhong, S. M.: Delay-dependent robust stability and control synthesis for uncertain switched neutral systems with mixed delays, Applied mathematics and computation 202, No. 2, 828-839 (2008) · Zbl 1143.93020 · doi:10.1016/j.amc.2008.03.028
[30]Zhong, S.; Ye, M.; Wu, S.; Stability, New: New stability and stabilization for switched neutral control systems, Chaos, solitons and fractals 42, No. 3, 1800-1811 (2009) · Zbl 1198.93187 · doi:10.1016/j.chaos.2009.03.093
[31]Xie, G.; Wang, L.: Stabilization of switched linear systems with time-delay in detection of switching signal, Journal of mathematical analysis and applications 305, No. 6, 277-290 (2005) · Zbl 1140.93463 · doi:10.1016/j.jmaa.2004.11.043
[32]Xie, W.; Wen, C.; Li, Z.: Input-to-state stabilization of switched nonlinear systems, IEEE transactions on automatic control 46, No. 7, 1111-1116 (2001) · Zbl 1010.93089 · doi:10.1109/9.935066
[33]Ji, Z.; Guo, X.; Xu, S.; Wang, L.: Stabilization of switched linear systems with time-varying delay in switching occurrence detection, Circuits, systems and signal processing 26, No. 3, 361-367 (2007) · Zbl 1118.93044 · doi:10.1007/s00034-006-0414-x
[34]Xie, D.; Chen, X.: Observer-based switched control design for switched linear systems with time-delay in detection of switching signal, IET control theory and applications 2, No. 5, 437-445 (2008)
[35]Xiang, Z. R.; Wang, R. H.: Robust control for uncertain switched non-linear systems with time delay under asynchronous switching, IET control theory and applications 3, No. 8, 1041-1050 (2009)
[36]Xiang, Z. R.; Wang, R. H.: Robust stabilization of switched non-linear systems with time-varying delays under asynchronous switching, Proc imeche, part I: Journal of systems and control engineering 223, No. 8, 1111-1128 (2009)
[37]Sun, X. M.; Zhao, J.; Hill, D. J.: Stability and L2-gain analysis for switched delay systems: a delay-dependent method, Automatica 42, No. 10, 1769-1774 (2006) · Zbl 1114.93086 · doi:10.1016/j.automatica.2006.05.007
[38]Liberzon, D.: Switching in systems and control, (2003)
[39]Petersen, I. R.: A stabilization algorithm for a class of uncertain linear systems, Systems and control letters 8, No. 4, 351-357 (1987) · Zbl 0618.93056 · doi:10.1016/0167-6911(87)90102-2
[40]Xie, L.: Output feedback H control of systems with parameter uncertainty, International journal of control 63, No. 4, 741-750 (1996) · Zbl 0841.93014 · doi:10.1080/00207179608921866