zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A fractal model for determining oxygen effective diffusivity of gas diffusion layer under the dry and wet conditions. (English) Zbl 1227.76058
Summary: We propose a new fractal model to determine the oxygen effective diffusivity of the porous gas diffusion layer (GDL) in proton exchange membrane fuel cell for both the dry and wet conditions. The model considers the GDL structure in terms of tortuosity and area fractal dimensions and also takes the Knudsen effect into account, which has no empirical constant but parameters with physical meanings. The fractal model is verified by the fair agreement with the experimental data and the results obtained from existing models. It is revealed that the Knudsen effect is essential for the understanding of the oxygen transport through the GDL. Under the dry condition, the oxygen effective diffusivity increases with higher area fractal dimension and lower tortuosity fractal dimension. For the wet condition, the water condensation in the GDL of mixed wettability is considered; and it is found that the behavior of oxygen effective diffusivity with liquid saturation depends on the GDL wettability. It is further revealed that for a given liquid saturation, the oxygen effective diffusivity increases with greater area fractal dimension; with the decrease of tortuosity fractal dimension, it also increases, except for the hydrophilic case at high liquid saturation.
MSC:
76N99Compressible fluids and gas dynamics, general
35Q35PDEs in connection with fluid mechanics
28A80Fractals
References:
[1]Flückiger, R.; Freunberger, S. A.; Kramer, D.; Wokaun, A.; Scherer, G. G.; Büchi, F. N.: Anisotropic effective diffusivity of porous gas diffusion layer materials for PEFC, Electrochim. acta 54, 551-559 (2008)
[2]Utaka, Y.; Tasaki, Y.; Wang, S.; Ishiji, T.; Uchikoshi, S.: Method of measuring oxygen diffusivity in microporous media, Int. J. Heat mass transfer 52, 3685-3692 (2009)
[3]Zamel, N.; Astrath, N. G. C.; Li, X.; Li, J.; Shen, J.; Zhou, J.; Astrath, F. B. G.; Wang, H.; Liu, Z.: Experimental measurements of effective diffusion coefficient of oxygen nitrogen mixture in PEM fuel cell diffusion media, Chem. eng. Sci. 65, 931-937 (2010)
[4]Inoue, G.; Yoshimoto, T.; Matsukuma, Y.; Minemoto, M.: Development of simulated gas diffusion layer of polymer electrolyte fuel cells and evaluation of its structure, J. power sources 175, 145-158 (2008)
[5]Becker, J.; Flückiger, R.; Reum, M.; Büchi, F. N.; Marone, F.; Stampanoni, M.: Determination of material properties of gas diffusion layers: experimental and simulations using phase contrast tomography microscopy, J. electrochemical soc. 156, B1175-B1181 (2009)
[6]Nam, J. H.; Kaviany, M.: Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium, Int. J. Heat mass transfer 46, 4595-4611 (2003)
[7]Gostick, J. T.; Ioannidis, M. A.; Fowler, M. W.; Pritzker, M. D.: Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells, J. power sources 173, 277-290 (2007)
[8]Wu, R.; Zhu, X.; Liao, Q.; Wang, H.; Ding, Y.; Li, J.; Ye, D.: Determination of oxygen effective diffusivity in porous gas diffusion layer using three dimensional pore network model, Electrochimi. acta 55, 7394-7403 (2010)
[9]Katz, A. J.; Thompson, A. H.: Fractal sandstone pores: implications for conductivity and pore formation, Phys. rev. Lett. 54, 1325-1328 (1998)
[10]Xu, P.; Yu, B.: Developing a new form of permeability and kozeny – carman constant for homogeneous porous media by means of fractal geometry, Adv. water resour. 31, 74-81 (2008)
[11]Yu, B. M.: Analysis of flow in fractal porous media, Appl. mech. Rev. 61 (2008)
[12]Shi, Y.; Xiao, J.; Pan, M.; Yuan, R.: A fractal permeability model for the gas diffusion layer of PEM fuel cells, J. power sources 160, 277-283 (2006)
[13]He, G.; Zhao, Z.; Ming, P.; Abuliti, A.; Yin, C.: A fractal model for predicting permeability and liquid water relative permeability in the gas diffusion layer (GDL) of pemfcs, J. power sources 163, 846-852 (2007)
[14]Shi, Y.; Xiao, J.; Quan, S.; Pan, M.; Yuan, R.: Fractal model for prediction of effective thermal conductivity of gas diffusion layer in proton exchange membrane fuel cell, J. power sources 185, 241-247 (2008)
[15]Shi, Y.; Xiao, J.; Quan, S.; Pan, M.; Zhang, L.: Fractal model for prediction of effective hydrogen diffusivity of gas diffusion layer in proton exchange membrane fuel cell, Int. J. Hydrogen energy 35, 2863-2867 (2010)
[16]Shi, Y.; Wu, H.; Quan, A.; Xiao, J.; Pan, M.: Fractal model for predicting the effective binary oxygen diffusivity of the gas diffusion layer in proton exchange membrane fuel cells, J. power sources 195, 4865-4870 (2010)
[17]Yu, B.; Cheng, P.: A fractal permeability model for bi-dispersed porous media, Int. J. Heat mass transfer 45, 2983-2993 (2002) · Zbl 1101.76408 · doi:10.1016/S0017-9310(02)00014-5
[18]Pollard, W. G.; Present, R. D.: On gaseous self-diffusion in long capillary tubes, Phys. rev. 73, 762-774 (1948)
[19]Gostick, J. T.; Fowler, M. W.; Ioannidis, M. A.; Pritzker, M. D.; Volfkovich, Y. M.; Sakars, A.: Capillary pressure and hydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells, J. power sources 156, 375-387 (2006)
[20]Zhang, F. Y.; Spernjak, D.; Prasad, A. K.; Advani, S. G.: In situ characterization of the catalyst layer in a polymer electrolyte membrane fuel cell, J. electrochem. Soc. 154, B1152-B1157 (2007)
[21]Yu, B. M.; Li, J. H.: Some fractal characters of porous media, Fractals 9, 365-372 (2001)
[22]Yu, B. M.: Fractal character for tortuous stream tubes in porous media, Chinese phys. Lett. 22, 158-160 (2005)
[23]Yu, B. M.; Li, J. H.: A geometry model for tortuosity of flow path in porous media, Chinese phys. Lett. 21, 1569-1571 (2004)
[24]Das, P. K.; Li, X.; Liu, Z. S.: Effective transport coefficient in PEM fuel cell catalyst and gas diffusion layers: beyond bruggeman approximation, Appl. energy 87, 2785 (2010)