zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Self-excitation of neurons leads to multiperiodicity of discrete-time neural networks with distributed delays. (English) Zbl 1227.93074
Summary: We investigate the interesting multiperiodicity of discrete-time neural networks with excitatory self-connections and distributed delays. Due to self-excitation of neurons, we construct 2 N closed regions in state space for N-dimensional networks and attain the coexistence of 2 N periodic sequence solutions in these closed regions. Meanwhile, we estimate exponential attracting domain for each periodic sequence solution and apply our results to discrete-time analogues of periodic or autonomous neural networks. Under self-excitation of neurons, numerical simulations are performed to illustrate the effectiveness of our results.
MSC:
93C55Discrete-time control systems
37N35Dynamical systems in control
92B20General theory of neural networks (mathematical biology)
References:
[1]Chua L O, Yang L. Cellular neural networks: theory. IEEE Trans Circ Syst, 1988, 35: 1257–1272 · Zbl 0663.94022 · doi:10.1109/31.7600
[2]Chua L O, Yang L. Cellular neural networks: Application. IEEE Trans Circ Syst, 1988, 35: 1273–1290 · doi:10.1109/31.7601
[3]Brucoli M, Carnimeo L, Grassi G. Discrete-time cellular neural networks for associative memories with learning and forgetting capabilities. IEEE Trans Circ Syst I, 1995, 42: 396–399 · Zbl 0846.68085 · doi:10.1109/81.401156
[4]Wang L, Zou X. Capacity of stable periodic solutions in discrete-time bidirectional associative memory neural networks. IEEE Trans Circ Syst II, 2004, 51: 315–319 · doi:10.1109/TCSII.2004.829571
[5]Mohamad S, Gopalsamy K. Dynamics of a class of discrete-time neural networks and their continuous-time counterparts. Math Comput Simul, 2000, 53: 1–39 · doi:10.1016/S0378-4754(00)00168-3
[6]Mohamad S, Gopalsamy K. Exponential stability of continuous-time and discrete-time cellular neural networks with discrete delays. Appl Math Comput, 2003, 135: 17–38 · Zbl 1030.34072 · doi:10.1016/S0096-3003(01)00299-5
[7]Mohamad S. Exponential stability preservation in discrete-time analogues of artificial neural networks with distributed delays. J Comput Appl Math, 2008, 215: 270–287 · Zbl 1154.39011 · doi:10.1016/j.cam.2007.04.009
[8]Mohamad S, Gopalsamy K. Exponential stability preservation in semi-discretisations of BAM networks with nonlinear impulses. Commun Nonl Sci Num Sim, 2009, 14: 27–50 · Zbl 1221.39007 · doi:10.1016/j.cnsns.2007.08.004
[9]Huang Z, Wang X, Gao F. The existence and global attractivity of almost periodic sequence solution of discrete-time neural networks. Phys Lett A, 2006, 350: 182–191 · Zbl 1195.34066 · doi:10.1016/j.physleta.2005.10.022
[10]Nie X, Cao J. Multistability of competitive neural networks with time-varying and distributed delays. Nonl Anal Real World Appl, 2009, 10: 928–942 · Zbl 1167.34383 · doi:10.1016/j.nonrwa.2007.11.014
[11]Wang L. Stabilizing Hopfield neural networks via inhibitory self-connections. J Math Anal Appl, 2004, 292: 135–147 · Zbl 1062.34087 · doi:10.1016/j.jmaa.2003.11.048
[12]Cheng C, Lin K, Shih C. Multistability in recurrent neural networks. SIAM J Appl Math, 2006, 66: 1301–1320 · Zbl 1106.34048 · doi:10.1137/050632440
[13]Guo S, Huang L, Wang L. Exponential stability of discrete-time Hopfield neural networks. Comput Math Appl, 2004, 47: 1249–1256 · Zbl 1075.34070 · doi:10.1016/S0898-1221(04)90119-8
[14]Guo S, Huang L. Periodic oscillation for discrete-time Hopfield neural networks. Phys Lett A, 2004, 329: 199–206 · Zbl 1209.82029 · doi:10.1016/j.physleta.2004.07.007
[15]Zeng Z, Wang J. Multiperiodicity of discrete-time delayed neural networks evoked by periodic external inputs. IEEE Trans Neural Network, 2006, 17: 1141–1151 · doi:10.1109/TNN.2006.877533
[16]Huang Z, Xia Y, Wang X. The existence and exponential attractivity of κ-almost periodic sequence solution of discrete time neural networks. Nonl Dynam, 2007, 50: 13–26 · Zbl 1176.92002 · doi:10.1007/s11071-006-9139-4
[17]Huang Z, Song Q, Feng C. Multistability in networks with self-excitation and high-order synaptic connectivity. IEEE Trans Circ Syst I, 2010, 57: 2144–2155 · doi:10.1109/TCSI.2009.2037401
[18]Huang Z, Wang X, Feng C. Multiperiodicity of periodically oscillated discrete-time neural networks with transient excitatory self-connections and sigmoidal nonlinearities. IEEE Trans Neur Netw, 2010, 21: 1643–1655 · doi:10.1109/TNN.2010.2067225
[19]Sun C, Feng C. Discrete-time analogues of integrodifferential equations modeling neural networks. Phys Lett A, 2005, 334: 180–191 · Zbl 1123.34339 · doi:10.1016/j.physleta.2004.10.082
[20]Sun C, Feng C. Exponential periodicity of continuous-time and discrete-time neural networks with delays. Neur Process Lett, 2004, 19: 131–146 · doi:10.1023/B:NEPL.0000023421.60208.30
[21]Liu Y, Wang Z, Serrano A, et al. Discrete-time recurrent neural networks with time-varying delays: Exponential stability analysis. Phys Lett A, 2007, 362: 480–488 · doi:10.1016/j.physleta.2006.10.073
[22]Song Q, Wang Z. A delay-dependent LMI approach to dynamics analysis of discrete-time recurrent neural networks with time-varying delays. Phys Lett A, 2007, 368: 134–145 · doi:10.1016/j.physleta.2007.03.088