zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two-sided inequalities for the extended Hurwitz-Lerch zeta function. (English) Zbl 1228.11137
Summary: Recently, the authors [Integral Transforms Spec. Funct. 22, No. 7, 487–506 (2011; Zbl 1242.11065)] unified and extended several interesting generalizations of the familiar Hurwitz-Lerch zeta function Φ(z,s,a) by introducing a Fox-Wright type generalized hypergeometric function in the kernel. For this newly introduced special function, two integral representations of different kinds are investigated here by means of a known result involving a Fox-Wright generalized hypergeometric function kernel, which was given earlier in [loc. cit], and by applying some Mathieu (α,λ)-series techniques. Finally, by appealing to each of these two integral representations, two sets of two-sided bounding inequalities are proved, thereby extending and generalizing the recent work by the last three authors [Appl. Math. Lett. 24, No. 8, 1473–1476 (2011; Zbl 1228.11135)].
MSC:
11M35Hurwitz and Lerch zeta functions
30D15Special classes of entire functions; growth estimates
33B15Gamma, beta and polygamma functions
33C20Generalized hypergeometric series, p F q
References:
[1]Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, North-holland mathematical studies 204 (2006)
[2]Srivastava, H. M.; Saxena, R. K.; Pogány, T. K.; Saxena, R.: Integral and computational representations of the extended Hurwitz–lerch zeta function, Integral transforms spec. Funct. 22, 487-506 (2011)
[3]Lin, S. -D.; Srivastava, H. M.: Some families of the Hurwitz–lerch zeta functions and associated fractional derivative and other integral representations, Appl. math. Comput. 154, 725-733 (2004) · Zbl 1078.11054 · doi:10.1016/S0096-3003(03)00746-X
[4]Goyal, S. P.; Laddha, R. K.: On the generalized zeta function and the generalized Lambert function, Ganita sandesh 11, 99-108 (1997) · Zbl 1186.11056
[5]Garg, M.; Jain, K.; Kalla, S. L.: A further study of general Hurwitz–lerch zeta function, Algebras groups geom. 25, 311-319 (2008) · Zbl 1210.11096
[6]Srivastava, H. M.; Choi, J.: Series associated with the zeta and related functions, (2001)
[7]Choi, J.; Srivastava, H. M.: Certain families of series associated with the Hurwitz–lerch zeta function, Appl. math. Comput. 170, 399-409 (2005) · Zbl 1082.11052 · doi:10.1016/j.amc.2004.12.004
[8]Gupta, P. L.; Gupta, R. C.; Ong, S. -H.; Srivastava, H. M.: A class of Hurwitz–lerch zeta distributions and their applications in reliability, Appl. math. Comput. 196, 521-532 (2008) · Zbl 1131.62093 · doi:10.1016/j.amc.2007.06.012
[9]Lin, S. -D.; Srivastava, H. M.; Wang, P. -Y.: Some expansion formulas for a class of generalized Hurwitz–lerch zeta functions, Integral transforms spec. Funct. 17, 817-827 (2006) · Zbl 1172.11026 · doi:10.1080/10652460600926923
[10]Pogány, T. K.: Integral representation of Mathieu (a,λ)-series, Integral transforms spec. Funct. 16, 685-689 (2005) · Zbl 1101.26018 · doi:10.1080/10652460500110297
[11]Qi, F.: Inequalities for Mathieu series, RGMIA res. Rep. coll. 4, No. 2, 187-193 (2001)
[12]Cerone, P.; Lenard, C. T.: On integral forms of generalized Mathieu series, J. inequal. Pure appl. Math. 4, No. 5 (2003) · Zbl 1072.26011
[13]Srivastava, H. M.; Tomovski, Ž.: Some problems and solutions involving Mathieu’s series and its generalizations, J. inequal. Pure appl. Math. 5, No. 2 (2004) · Zbl 1068.33032
[14]Pogány, T. K.; Srivastava, H. M.; Tomovski, Ž.: Some families of Mathieu a-series and alternating Mathieu a-series, Appl. math. Comput. 173, 69-108 (2006) · Zbl 1097.33016 · doi:10.1016/j.amc.2005.02.044
[15]Jankov, D.; Pogány, T. K.; Saxena, R. K.: Extended general Hurwitz–lerch zeta function as Mathieu (a,λ)–series, Appl. math. Lett. 24, No. 8, 1473-1476 (2011) · Zbl 1228.11135 · doi:10.1016/j.aml.2011.03.040
[16]Pogány, T. K.; Srivastava, H. M.: Some Mathieu-type series associated with the fox–wright function, Comput. math. Appl. 57, 127-140 (2009) · Zbl 1165.33309 · doi:10.1016/j.camwa.2008.07.016
[17], Applied mathematics series 55 (1964)
[18]Elezović, N.; Giordano, C.; Pečarić, J.: The best bounds in gautschi’s inequality, Math. inequal. Appl. 3, 239-252 (2000) · Zbl 0947.33001