zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On strongly Bazilevic functions associated with generalized Robertson functions. (English) Zbl 1228.30022
Summary: We define a class B ˜ k (α,ρ,β,γ) of analytic functions by using a generalized Robertson function which generalizes a number of classes studied earlier such as the class of strongly Bazilevic functions. Some interesting properties of this class, including coefficient difference problems, arc length and a sufficient condition for univalency, are investigated.
MSC:
30D15Special classes of entire functions; growth estimates
References:
[1]Moulis, E. J.: Generalizations of the Robertson functions, Pacific J. Math. 81, No. 1, 167-174 (1979) · Zbl 0388.30009
[2]Noor, K. I.: On certain analytic functions related with strongly close-to-convex functions, Appl. math. Comput. 197, 149-157 (2008) · Zbl 1133.30308 · doi:10.1016/j.amc.2007.07.039
[3]Noor, K. I.: On strongly close-to-convex functions, Mathematica (Cluj) 44, No. 67, 25-29 (2002) · Zbl 1084.30503
[4]Noor, K. I.: Some classes of analytic functions related with bazilevic functions, Tamkang J. Math. 28, No. 3, 201-204 (1997) · Zbl 0909.30008
[5]Noor, K. I.; Al-Bany, S. A.: On bazilevic functions, Int. J. Math. math. Sci. 10, No. 1, 79-88 (1987) · Zbl 0623.30020 · doi:10.1155/S0161171287000103
[6]Thomas, D. K.: On bazilevic functions, Trans. amer. Math. soc. 132, 353-361 (1968) · Zbl 0174.12102 · doi:10.2307/1994845
[7]Hayman, W. K.: On functions with positive real part, J. London math. Soc. 36, 34-48 (1961) · Zbl 0097.06103 · doi:10.1112/jlms/s1-36.1.35
[8]G.M. Golusin, Geometrische Funktiontheorie, Berlin, 1957.
[9]Golusin, G. M.: On distortion theorem and coefficients of univalent functions, Math. sb. 19, 183-203 (1946) · Zbl 0063.01668
[10]Polatoglu, Y.; Bolcal, M.: Some results on the janowski’s starlike functions of complex order
[11]Noor, K. I.; Bukhari, S. Z. H.: On analytic functions related with generalized Robertson functions, Appl. math. Comput. 215, 2965-2970 (2009) · Zbl 1180.30020 · doi:10.1016/j.amc.2009.09.043
[12]Brannan, D. A.; Clunie, J. G.; Kirwan, W. E.: On the coefficient problem for functions of bounded boundary rotation, Ann. acad. Sci. fenn. Series AI math. 523, 1-18 (1973) · Zbl 0257.30011
[13]Ziegler, M. R.; Libera, J. R.: Regular functions f(z) for which ZF(z) is a-spiral, Trans. amer. Math. soc. 166, 361-370 (1972)
[14]Pommerenke, Ch.: On close-to-convex analytic functions, Trans. amer. Math. soc. 114, 176-186 (1965) · Zbl 0132.30204 · doi:10.2307/1993995