zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions. (English) Zbl 1228.34009
Summary: This paper studies the existence of solutions for nonlinear fractional differential equations and inclusions of order q(3,4] with anti-periodic boundary conditions. In the case of inclusion problem, the existence results are established for convex as well as nonconvex multivalued maps. Our results are based on some fixed point theorems, Leray-Schauder degree theory, and nonlinear alternative of Leray-Schauder type. Some illustrative examples are discussed.
MSC:
34A08Fractional differential equations
34B99Boundary value problems for ODE
References:
[1]Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives, theory and applications, (1993) · Zbl 0818.26003
[2]Podlubny, I.: Fractional differential equations, (1999)
[3]Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, North-holland mathematics studies 204 (2006)
[4], Advances in fractional calculus: theoretical developments and applications in physics and engineering (2007)
[5]Chang, Y. -K.; Nieto, J. J.: Some new existence results for fractional differential inclusions with boundary conditions, Math. comput. Modelling 49, 605-609 (2009) · Zbl 1165.34313 · doi:10.1016/j.mcm.2008.03.014
[6]Ahmad, B.; Nieto, J. J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. math. Appl. 58, 1838-1843 (2009) · Zbl 1205.34003 · doi:10.1016/j.camwa.2009.07.091
[7]Agarwal, R. P.; Belmekki, M.; Benchohra, M.: A survey on semilinear differential equations and inclusions involving Riemann–Liouville fractional derivative, Adv. difference equ., 47 (2009) · Zbl 1182.34103 · doi:10.1155/2009/981728
[8]Henderson, J.; Ouahab, A.: Fractional functional differential inclusions with finite delay, Nonlinear anal. 70, 2091-2105 (2009) · Zbl 1159.34010 · doi:10.1016/j.na.2008.02.111
[9]Gafiychuk, V.; Datsko, B.; Meleshko, V.: Mathematical modeling of different types of instabilities in time fractional reaction–diffusion systems, Comput. math. Appl. 59, 1101-1107 (2010) · Zbl 1189.35151 · doi:10.1016/j.camwa.2009.05.013
[10]Agarwal, R. P.; Lakshmikantham, V.; Nieto, J. J.: On the concept of solution for fractional differential equations with uncertainty, Nonlinear anal. 72, 2859-2862 (2010) · Zbl 1188.34005 · doi:10.1016/j.na.2009.11.029
[11]Ahmad, B.: Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations, Appl. math. Lett. 23, 390-394 (2010) · Zbl 1198.34007 · doi:10.1016/j.aml.2009.11.004
[12]Nieto, J. J.: Maximum principles for fractional differential equations derived from Mittag-Leffler functions, Appl. math. Lett. 23, 1248-1251 (2010) · Zbl 1202.34019 · doi:10.1016/j.aml.2010.06.007
[13]Darwish, M. A.; Ntouyas, S. K.: On initial and boundary value problems for fractional order mixed type functional differential inclusions, Comput. math. Appl. 59, 1253-1265 (2010) · Zbl 1189.34029 · doi:10.1016/j.camwa.2009.05.006
[14]Ahmad, B.; Otero-Espinar, V.: Existence of solutions for fractional differential inclusions with anti-periodic boundary conditions, Bound. value probl., 11 (2009) · Zbl 1172.34004 · doi:10.1155/2009/625347
[15]Ahmad, B.; Nieto, J. J.: Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory, Topol. methods nonlinear anal. 35, 295-304 (2010)
[16]Ahmad, B.: Existence of solutions for fractional differential equations of order q(2,3] with anti-periodic boundary conditions, J. appl. Math. comput. 34, 385-391 (2010) · Zbl 1216.34003 · doi:10.1007/s12190-009-0328-4
[17]R.P. Agarwal, B. Ahmad, Existence of solutions for impulsive anti-periodic boundary value problems of fractional semilinear evolution equations, Dyna. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal., (in press). · Zbl 1226.26005 · doi:http://online.watsci.org/abstract_pdf/2011v18/v18n4a-pdf/3.pdf
[18]Wang, G.; Ahmad, B.; Zhang, L.: Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order, Nonlinear anal. 74, 792-804 (2011) · Zbl 1214.34009 · doi:10.1016/j.na.2010.09.030
[19]Smart, D. R.: Fixed point theorems, (1980)
[20]Hu, Sh.; Papageorgiou, N.: Handbook of multivalued analysis, theory I, (1997)
[21]Deimling, K.: Multivalued differential equations, (1992) · Zbl 0760.34002
[22]Kisielewicz, M.: Differential inclusions and optimal control, (1991)
[23]Lasota, A.; Opial, Z.: An application of the Kakutani–Ky Fan theorem in the theory of ordinary differential equations, Bull. acad. Pol sci., ser. Sci. math. Astron. phys. 13, 781-786 (1965) · Zbl 0151.10703
[24]Bressan, A.; Colombo, G.: Extensions and selections of maps with decomposable values, Studia math. 90, 69-86 (1988) · Zbl 0677.54013
[25]Covitz, H.; Jr., S. B. Nadler: Multivalued contraction mappings in generalized metric spaces, Israel J. Math. 8, 5-11 (1970) · Zbl 0192.59802 · doi:10.1007/BF02771543
[26]Granas, A.; Dugundji, J.: Fixed point theory, (2005)
[27]Castaing, C.; Valadier, M.: Convex analysis and measurable multifunctions, Lecture notes in mathematics 580 (1977) · Zbl 0346.46038