zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Master-slave synchronization of Lur’e systems with sector and slope restricted nonlinearities. (English) Zbl 1228.34076
Summary: This letter presents a synchronization method for Lur’e systems with sector and slope restricted nonlinearities. A static error feedback controller based on the Lyapunov stability theory is proposed for asymptotic synchronization. The Lyapunov function candidate is chosen as a quadratic form of the error states and nonlinear functions of the systems. The nonlinearities are expressed as convex combinations of sector and slope bounds by using convex properties of the nonlinear function so that equality constraints are converted into inequality constraints. Then, the feedback gain matrix is derived through a linear matrix inequality (LMI) formulation. Finally, a numerical example shows the effectiveness of the proposed method.
MSC:
34D06Synchronization
34D08Characteristic and Lyapunov exponents
34A34Nonlinear ODE and systems, general
34H10Chaos control (ODE)
93B52Feedback control
References:
[1]Chen, G.; Dong, X.: From chaos to order: methodologies, perspectives and applications, (1998)
[2]Sprott, J. C.: Chaos and time-series analysis, (2003)
[3]Ott, E.; Grebogi, C.; Yorke, J. A.: Phys. rev. Lett., Phys. rev. Lett. 64, 1196 (1990)
[4]Pecora, L. M.; Carroll, T. L.: Phys. rev. Lett., Phys. rev. Lett. 64, 821 (1990)
[5]Wu, X.; Lu, J.: Chaos solitons fractals, Chaos solitons fractals 18, 721 (2003)
[6]Suykens, J. A. K.; Vandewalle, J.: Int. J. Bifur. chaos, Int. J. Bifur. chaos 3, 665 (1996)
[7]Suykens, J. A. K.; Curran, P. F.; Chua, L. O.: IEEE trans. Circuits systems I fund. Theory appl., IEEE trans. Circuits systems I fund. Theory appl. 46, 841 (1999)
[8]Yalçin, M. E.; Suykens, J. A. K.; Vandewalle, J.: Int. J. Bifur. chaos, Int. J. Bifur. chaos 11, 1707 (2001)
[9]Liao, X.; Chen, G.: Int. J. Bifur. chaos, Int. J. Bifur. chaos 13, 207 (2003)
[10]Cao, J.; Li, H. X.; Ho, D. W. C.: Chaos solitons fractals, Chaos solitons fractals 23, 1285 (2005)
[11]Han, Q. -L.: Phys. lett. A, Phys. lett. A 360, 563 (2007)
[12]Park, Ju H.; Kwon, O. M.: Chaos solitons fractals, Chaos solitons fractals 23, 445 (2005)
[13]Park, Ju H.: Chaos solitons fractals, Chaos solitons fractals 25, 579 (2005)
[14]Lee, S. M.; Ji, D. H.; Park, Ju H.; Won, S. C.: Phys. lett. A, Phys. lett. A 372, 4905 (2008)
[15]Suykens, J. A. K.; Curran, P. F.; Chua, L. O.: Int. J. Bifur. chaos, Int. J. Bifur. chaos 7, 671 (1997)
[16]Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory, (1994)
[17]Chua, L. O.; Komura, M.; Matsumoto, T.: IEEE trans. Circuits systems I fund. Theory appl., IEEE trans. Circuits systems I fund. Theory appl. 33, 1072 (1986)
[18]Kapitaniak, T.; Chua, L. O.: Int. J. Bifur. chaos, Int. J. Bifur. chaos 4, 477-482 (1994)