zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An extended active control for chaos synchronization. (English) Zbl 1228.34078
Summary: By introducing a control strength matrix, the active control theory in chaotic synchronization is developed. With this extended method, chaos complete synchronization can be achieved more easily, i.e., a much smaller control signal is enough to reach synchronization in most cases. Numerical simulations on Rössler, Liu’s four-scroll, and Chen system confirmed this and show that the synchronization result depends on the control strength significantly. Especially, in the case of Liu and Chen systems, the response systems’ largest Lyapunov exponents’ variation with the control strength is not monotone and there exist minima. It is novel for Chen system that the synchronization speed with a special small strength is higher than that of the usual active control which, as a special case of the extended method, has a much larger control strength. All these results indicate that the control strength is an important factor in the actual synchronization. So, with this extended active control, one can make a better and more practical synchronization scheme by adjusting the control strength matrix.
MSC:
34D06Synchronization
34D08Characteristic and Lyapunov exponents
34H10Chaos control (ODE)
34C28Complex behavior, chaotic systems (ODE)
References:
[1]Pecora, L. M.; Carrol, T. L.: Phys. rev. Lett., Phys. rev. Lett. 64, 821 (1990)
[2]Cuomo, K. M.; Oppenheim, A. V.: Phys. rev. Lett., Phys. rev. Lett. 71, 65 (1993)
[3]Kocarev, L.; Parlitz, U.: Phys. rev. Lett., Phys. rev. Lett. 74, 5028 (1995)
[4]Chen, H. K.; Lin, T. N.; Chen, J. H.: Jpn. J. Appl. phys., Jpn. J. Appl. phys. 42, 7603 (2003)
[5]Tang, D. Y.; Heckenberg, N. R.: Phys. rev. E, Phys. rev. E 55, 6618 (1997)
[6]Baker, G. L.; Blackburn, J. A.; Smith, H. J. T.: Phys. rev. Lett., Phys. rev. Lett. 81, 554 (1998)
[7]Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: Phys. rev. Lett., Phys. rev. Lett. 76, 1804 (1996)
[8]Parlitz, U.; Junge, L.; Lauterborn, W.; Kocarev, K.: Phys. rev. E, Phys. rev. E 54, 2115 (1996)
[9]Lee, K. J.; Kwak, Y.; Lim, T. K.: Phys. rev. Lett., Phys. rev. Lett. 81, 321 (1998)
[10]Roman, F. S. S.; Boccaletti, S.; Maza, D.; Mancini, H.: Phys. rev. Lett., Phys. rev. Lett. 81, 3639 (1998)
[11]Lu, H. T.; He, Z. Y.: Phys. lett. A, Phys. lett. A 219, 271 (1996)
[12]Shuai, J. W.; Durand, D. M.: Phys. lett. A, Phys. lett. A 264, 289 (1999)
[13]Liao, T. L.; Huang, N. S.: Phys. lett. A, Phys. lett. A 234, 262 (1997)
[14]Vassiliadis, D.: Physica D, Physica D 71, 319 (1994)
[15]Chen, S. H.; Lü, J. H.: Phys. lett. A, Phys. lett. A 299, 353 (2002)
[16]Solak, E.; Morgul, O.; Ersoy, U.: Phys. lett. A, Phys. lett. A 279, 47 (2001)
[17]Ramirez, J. A.; Puebla, H.; Cervantes, H.: Phys. lett. A, Phys. lett. A 289, 193 (2001)
[18]Huang, L. L.; Feng, R. P.; Wang, M.: Phys. lett. A, Phys. lett. A 320, 271 (2004)
[19]Chen, H. K.: Chaos solitons fractals, Chaos solitons fractals 23, 1245 (2005)
[20]Yu, H. J.; Liu, Y. Z.: Phys. lett. A, Phys. lett. A 314, 292 (2003)
[21]Tang, R. A.; Xue, J. K.: Chaos solitons fractals, Chaos solitons fractals 28, 228 (2006)
[22]Ge, Z. M.; Tsen, P. C.: Nonlinear anal., Nonlinear anal. 69, 4604 (2008)
[23]Bai, E. W.; Lonngren, K. E.: Chaos solitons fractals, Chaos solitons fractals 8, 51 (1997)
[24]Bai, E. W.; Lonngren, K. E.: Chaos solitons fractals, Chaos solitons fractals 11, 1041 (2000)
[25]Agiza, H. N.; Yassen, M. T.: Phys. lett. A, Phys. lett. A 278, 191 (2001)
[26]Li, Z.; Han, C. Z.; Shi, S. J.: Phys. lett. A, Phys. lett. A 301, 224 (2002)
[27]Codreanu, S.: Chaos solitons fractals, Chaos solitons fractals 15, 507 (2003)
[28]Njah, A. N.; Vincent, U. E.: J. sound vib., J. sound vib. 319, 41 (2009)
[29]Ho, M. C.; Hung, Y. C.; Chou, C. H.: Phys. lett. A, Phys. lett. A 296, 43 (2002)
[30]Ho, M. C.; Hung, Y. C.: Phys. lett. A, Phys. lett. A 301, 424 (2002)
[31]Yassen, M. T.: Chaos solitons fractals, Chaos solitons fractals 28, 228 (2006)
[32]Liu, W. B.; Chen, G. R.: Int. J. Bifur. chaos, Int. J. Bifur. chaos 13, 261 (2003)