zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The (G ' G)-expansion method for nonlinear differential-difference equations. (English) Zbl 1228.34096
Summary: In this Letter, an algorithm is devised for using the (G ' G)-expansion method to solve nonlinear differential-difference equations. With the aid of symbolic computation, we choose two discrete nonlinear lattice equations to illustrate the validity and advantages of the algorithm. As a result, hyperbolic function solutions and trigonometric function solutions with parameters are obtained. When the parameters are taken as special values, some known solutions including kink-type solitary wave solution and singular travelling wave solution are recovered. It is shown that the proposed algorithm is effective and can be used for many other nonlinear differential-difference equations in mathematical physics.
MSC:
34K05General theory of functional-differential equations
34K31Lattice functional-differential equations
References:
[1]Ablowitz, M. J.; Clarkson, P. A.: Solitons, nonlinear evolution equations and inverse scattering, (1991) · Zbl 0762.35001
[2]Hirota, R.: Phys. rev. Lett., Phys. rev. Lett. 27, 1192 (1971)
[3]Miurs, M. R.: Bäcklund transformation, (1978)
[4]Weiss, J.; Tabor, M.; Carnevale, G.: J. math. Phys., J. math. Phys. 24, 522 (1983)
[5]Yan, C. T.: Phys. lett. A, Phys. lett. A 224, 77 (1996)
[6]Wang, M. L.: Phys. lett. A, Phys. lett. A 213, 279 (1996)
[7]El-Shahed, M.: Int. J. Nonlinear sci. Numer. simul., Int. J. Nonlinear sci. Numer. simul. 6, 163 (2005)
[8]He, J. H.: Int. J. Nonlinear sci. Numer. simul., Int. J. Nonlinear sci. Numer. simul. 6, 207 (2005)
[9]He, J. H.: Chaos solitons fractals, Chaos solitons fractals 26, 695 (2005)
[10]He, J. H.: Int. J. Nonlinear mech., Int. J. Nonlinear mech. 34, 699 (1999)
[11]He, J. H.: Appl. math. Comput., Appl. math. Comput. 114, 115 (2000)
[12]He, J. H.: Chaos solitons fractals, Chaos solitons fractals 19, 847 (2004)
[13]He, J. H.: Phys. lett. A, Phys. lett. A 335, 182 (2005)
[14]Abassy, T. A.; El-Tawil, M. A.; Saleh, H. K.: Int. J. Nonlinear sci. Numer. simul., Int. J. Nonlinear sci. Numer. simul. 5, 327 (2004)
[15]Zayed, E. M. E.; Zedan, H. A.; Gepreel, K. A.: Int. J. Nonlinear sci. Numer. simul., Int. J. Nonlinear sci. Numer. simul. 5, 221 (2004)
[16]Abdusalam, H. A.: Int. J. Nonlinear sci. Numer. simul., Int. J. Nonlinear sci. Numer. simul. 6, 99 (2005)
[17]Zhang, S.; Xia, T. C.: Commun. theor. Phys. (Beijing), Commun. theor. Phys. (Beijing) 45, 985 (2006)
[18]Zhang, S.; Xia, T. C.: Appl. math. Comput., Appl. math. Comput. 181, 319 (2006)
[19]Zhang, S.: Chaos solitons fractals, Chaos solitons fractals 31, 951 (2007)
[20]Dai, C. Q.; Zhang, J. F.: Commun. theor. Phys. (Beijing) A, Commun. theor. Phys. (Beijing) A 350, 367 (2006)
[21]Hu, J. Q.: Chaos solitons fractals, Chaos solitons fractals 23, 391 (2005)
[22]Chen, Y.; Wang, Q.; Li, B.: Commun. theor. Phys. (Beijing), Commun. theor. Phys. (Beijing) 42, 655 (2004)
[23]Yomba, E.: Chaos solitons fractals, Chaos solitons fractals 27, 187 (2006)
[24]Zhang, S.; Xia, T. C.: Phys. lett. A, Phys. lett. A 356, 119 (2006)
[25]Zhang, S.; Xia, T. C.: Appl. math. Comput., Appl. math. Comput. 182, 1651 (2006)
[26]Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q.: Phys. lett. A, Phys. lett. A 289, 69 (2001)
[27]Fu, Z. T.; Liu, S. K.; Liu, S. D.; Zhao, Q.: Phys. lett. A, Phys. lett. A 290, 72 (2001)
[28]Parkes, E. J.; Duffy, B. R.; Abbott, P. C.: Phys. lett. A, Phys. lett. A 295, 280 (2002)
[29]Liu, J. B.; Yang, K. Q.: Chaos solitons fractals, Chaos solitons fractals 22, 111 (2004)
[30]Zhang, S.: Phys. lett. A, Phys. lett. A 358, 414 (2006)
[31]Zhang, S.: Chaos solitons fractals, Chaos solitons fractals 30, 1213 (2006)
[32]Zhang, S.: Chaos solitons fractals, Chaos solitons fractals 32, 847 (2007)
[33]Zhang, S.: Chaos solitons fractals, Chaos solitons fractals 32, 1375 (2007)
[34]Zhang, S.; Xia, T. C.: Appl. math. Comput., Appl. math. Comput. 183, 1190 (2006)
[35]Zhang, S.: Appl. math. Comput., Appl. math. Comput. 189, 836 (2007)
[36]Abdou, M. A.: Chaos solitons fractals, Chaos solitons fractals 31, 95 (2007)
[37]Sirendaoreji; Sun, J.: Phys. lett. A, Phys. lett. A 309, 387 (2003)
[38]Zhang, S.; Xia, T. C.: Phys. lett. A, Phys. lett. A 363, 356 (2007)
[39]Zhang, S.; Xia, T. C.: J. phys. A: math. Theor., J. phys. A: math. Theor. 40, 227 (2007)
[40]Zhang, S.: Appl. math. Comput., Appl. math. Comput. 188, 1 (2007)
[41]Zhang, S.: Phys. lett. A, Phys. lett. A 368, 470-475 (2007)
[42]He, J. H.; Wu, X. H.: Chaos solitons fractals, Chaos solitons fractals 30, 700 (2006)
[43]He, J. H.; Abdou, M. A.: Chaos solitons fractals, Chaos solitons fractals 34, 1421 (2006)
[44]Zhang, S.: Chaos solitons fractals, Chaos solitons fractals 38, 270 (2008)
[45]Zhang, S.: Phys. lett. A, Phys. lett. A 365, 448 (2007)
[46]Zhang, S.: Nonlinear dyn., Nonlinear dyn. 52, 11 (2008)
[47]Zhang, S.: Appl. math. Comput., Appl. math. Comput. 197, 128 (2008)
[48]Zhang, S.: Appl. math. Comput., Appl. math. Comput. 199, 242 (2008)
[49]Ebaid, A.: Phys. lett. A, Phys. lett. A 365, 213 (2007)
[50]Zhu, S. D.: Int. J. Nonlinear sci. Numer. simul., Int. J. Nonlinear sci. Numer. simul. 8, 461 (2007)
[51]Zhu, S. D.: Int. J. Nonlinear sci. Numer. simul., Int. J. Nonlinear sci. Numer. simul. 8, 465 (2007)
[52]Fermi, E.; Pasta, J.; Ulam, S.: Collected papers of enrico Fermi, (1965)
[53]Wang, M. L.; Li, X. Z.; Zhang, J. L.: Phys. lett. A, Phys. lett. A 372, 417 (2008)
[54]Wang, M. L.; Zhang, J. L.; Li, X. Z.: Appl. math. Comput., Appl. math. Comput. 206, 321 (2008)
[55]Bekir, A.: Phys. lett. A, Phys. lett. A 372, 3400 (2008)
[56]A. Bekir, A.C. Cevikel, Chaos Solitons Fractals (2008), doi:10.1016/j.chaos.2008.07.017, in press
[57]Zhang, S.; Tong, J. L.; Wang, W.: Phys. lett. A, Phys. lett. A 372, 2254 (2008)
[58]Zhang, J.; Wei, X.; Lu, Y.: Phys. lett. A, Phys. lett. A 372, 3653 (2008)
[59]Zhu, J. M.: Chin. phys., Chin. phys. 14, 1290 (2005)
[60]Wu, G. C.; Xia, T. C.: Phys. lett. A, Phys. lett. A 372, 604 (2008)