zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the Cauchy problem for the two-component Camassa-Holm system. (English) Zbl 1228.35092
The authors consider a two-component Camassa-Holm system, which includes the Camassa-Holm equation itself as a special case. This system is known to be integrable and to have a physical interpretation. They consider the question of existence and uniqueness for the initial value problem of this system. They also investigate whether or not this system admits wave-breaking phenomena similar to that of the Camassa-Holm equation itself. The authors claim to improve previously-known results for the system.
MSC:
35G25Initial value problems for nonlinear higher-order PDE
35L15Second order hyperbolic equations, initial value problems
35B44Blow-up (PDE)
References:
[1]Aratyn, H., Gomes, J.F., Zimerman, A.H.: On a negative flow of the AKNS hierarchy and its relation to a two-Component Camassa–Holm equation. Symmetry Integrability Geom. Methods Appl. 2, (2006), paper 070, 12 pp.
[2]Bony J.M.: Calcul symbolique et propagation des singularités pour les quations aux drivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14(4), 209–246 (1981)
[3]Bressan A., Constantin A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007) · Zbl 1105.76013 · doi:10.1007/s00205-006-0010-z
[4]Bressan A., Constantin A.: Global dissipative solutions of the Camassa–Holm equation. Anal. Appl. 5, 1–27 (2007) · Zbl 1139.35378 · doi:10.1142/S0219530507000857
[5]Camassa R., Holm D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993) · Zbl 0936.35153 · doi:10.1103/PhysRevLett.71.1661
[6]Chen M., Liu S., Zhang Y.: A 2-Component generalization of the Camassa–Holm equation and its solutions. Lett. Math. Phys. 75, 1–15 (2006) · Zbl 1105.35102 · doi:10.1007/s11005-005-0041-7
[7]Chemin, J.-Y.: Localization in Fourier space and Navier-Stokes system. Phase Space Analysis of Partial Differential Equations. Proceedings, CRM series, Pisa, pp. 53–136 (2004)
[8]Chemin J.-Y.: Perfect Incompressible Fluids. Oxford University Press, New York (1998)
[9]Constantin A.: Global existence of solutions and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000) · Zbl 0944.00010 · doi:10.5802/aif.1757
[10]Constantin A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006) · Zbl 1108.76013 · doi:10.1007/s00222-006-0002-5
[11]Constantin A., Escher J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998) · Zbl 0923.76025 · doi:10.1007/BF02392586
[12]Constantin A., Escher J.: Particle trajectories in solitary water waves. Bull. Amer. Math. Soc. 44, 423–431 (2007) · Zbl 1126.76012 · doi:10.1090/S0273-0979-07-01159-7
[13]Constantin A., Ivanov R.I.: On an integrable two-component Camassa Holm shallow water system. Phys. Lett. A 372, 7129–7132 (2008) · Zbl 1227.76016 · doi:10.1016/j.physleta.2008.10.050
[14]Constantin A., Kolev B.: Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78, 787–804 (2003) · Zbl 1037.37032 · doi:10.1007/s00014-003-0785-6
[15]Constantin A., Lannes D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis-Procesi equations. Arch. Rantion. Mech. Anal. 192, 165–186 (2009) · Zbl 1169.76010 · doi:10.1007/s00205-008-0128-2
[16]Constantin A., McKean H.P.: A shallow water equation on the circle. Comm. Pure Appl. Math. 52, 949–982 (1999) · doi:10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D
[17]Danchin R.: A few remarks on the Camassa–Holm equation. Differ. Integr. Equ. 14, 953–988 (2001)
[18]Danchin, R.: Fourier Analysis Methods for PDEs. Lecture Notes, 14 November (2005)
[19]Holm D.D., Tronci C.: Geodesic ows on semidirect-product Lie groups: geometry of singular measure-valued solutions. Proc. R. Soc. London Ser. A 465, 457–476 (2009) · Zbl 1186.37090 · doi:10.1098/rspa.2008.0263
[20]Escher J., Lechtenfeld O., Yin Z.: Well-posedness and blow-up phenomena for the 2-Component Camassa–Holm equation. Discret. Contin. Dyn. Syst. 19, 493–513 (2007) · Zbl 1149.35307 · doi:10.3934/dcds.2007.19.493
[21]Falqui G.: On a Camassa–Holm type equation with two dependent variables. J. Phys. A Math. Gen. 39, 327–342 (2006) · Zbl 1084.37053 · doi:10.1088/0305-4470/39/2/004
[22]Fokas A., Fuchssteiner B.: Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D 4, 47–66 (1981) · Zbl 1194.37114 · doi:10.1016/0167-2789(81)90004-X
[23]Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations. In: Spectral Theory and Differential Equations. Lecture Notes in Math., vol. 448. Springer, Berlin, pp. 25–70 (1975)
[24]Kolev B.: Poisson brackets in hydrodynamics. Discrete Contin. Dyn. Syst. 19, 555–574 (2007) · Zbl 1139.53040 · doi:10.3934/dcds.2007.19.555
[25]Popowwicz Z.: A 2-component or N = 2 supersymmetric Camassa–Holm equation. Phys. Lett. A 354, 110–114 (2006) · Zbl 05675829 · doi:10.1016/j.physleta.2006.01.027
[26]Shabat, A., Martínez Alonso, L.: On the prolongation of a hierarchy of hydrodynamic chains. In: Shabat, A.B. et al. (eds.) New trends in integrability and partial solvability. Proceedings of the NATO advanced research workshop, Cadiz, Spain 2002, NATO Science Series, Kluwer Academic Publishers, Dordrecht, pp. 263–280 (2004)
[27]Toland J.F.: Stokes waves. Topol. Methods Nonlinear Anal. 7, 1–48 (1996)
[28]Triebel H.: Theory of Function Spaces. Monograph in mathematics, vol. 78. Birkhauser Verlag, Basel (1983)
[29]Whitham G.B.: Linear and nonlinear waves. Wiley, New York (1980)
[30]Yin Z.: On the Cauchy problem for an integrable equation with peakonsolutions. Illinois J. Math. 47, 649–666 (2003)