zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Convergence theorems for asymptotically pseudocontractive mappings in the intermediate sense. (English) Zbl 1228.47065
Summary: We prove strong convergence of the Ishikawa scheme for uniformly L-Lipschitzian and asymptotically pseudocontractive mappings in the intermediate sense. No compactness assumption is imposed either on T or C, and computation of intersection of closed convex sets C n and Q n for each n1 is not required. We also obtain convergence results in this direction for asymptotically strict pseudocontractive mappings in the intermediate sense. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear mappings.
MSC:
47J25Iterative procedures (nonlinear operator equations)
47H09Mappings defined by “shrinking” properties
46B20Geometry and structure of normed linear spaces
47H10Fixed point theorems for nonlinear operators on topological linear spaces
65J15Equations with nonlinear operators (numerical methods)
References:
[1]Goebel, K.; Kirk: Topics in metric fixed point theory, Cambridge studies in advanced mathematics 28 (1990) · Zbl 0708.47031
[2]Goebel, K.; Kirk: A fixed point theorem for asymptotically nonexpansive mappings, Proceedings of the American mathematical society 35, 171-174 (1972) · Zbl 0256.47045 · doi:10.2307/2038462
[3]Chidume, C. E.; Ofoedu, E. U.; Zegeye, H.: Strong and weak convergence theorems for asymptotically nonexpansive mappings, Journal of mathematical analysis and applications 280, No. 2, 364-374 (2003) · Zbl 1057.47071 · doi:10.1016/S0022-247X(03)00061-1
[4]Gornicki, J.: Weak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces, Commentationes mathematicae universitatis carolinae, 249-252 (1989) · Zbl 0686.47045
[5]Rhoades, B. E.: Comments on two fixed point iteration methods, Journal of mathematical analysis and applications 56, 741-750 (1976) · Zbl 0353.47029 · doi:10.1016/0022-247X(76)90038-X
[6]Rhoades, B. E.: Fixed point iteration methods for certain nonlinear mappings, Journal of mathematical analysis and applications 183, 118-120 (1994) · Zbl 0807.47045 · doi:10.1006/jmaa.1994.1135
[7]Schu, J.: Iterative construction of fixed points of asymptotically nonexpansive mappings, Journal of mathematical analysis and applications 158, 407-413 (1991) · Zbl 0734.47036 · doi:10.1016/0022-247X(91)90245-U
[8]Schu, J.: Weak and strong convergence of fixed points of asymptotically nonexpansive maps, Bulletin of the australian mathematical society 43, 153-159 (1991) · Zbl 0709.47051 · doi:10.1017/S0004972700028884
[9]Bruck, R. E.; Kuczumow, T.; Reich, S.: Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with uniform Opial condition, Colloquium mathematicum 65, No. 2, 169-179 (1993) · Zbl 0849.47030
[10]Kirk, W. A.: Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel journal of mathematics 17, 339-346 (1974) · Zbl 0286.47034 · doi:10.1007/BF02757136
[11]Kim, J. K.; Nam, Y. M.: Modified Ishikawa iterative sequence with errors for asymptotically set-valued pseudocontractive mappings in Banach spaces, Bulletin of the korean mathematical societly 43, No. 4, 847-860 (2006) · Zbl 1130.47047 · doi:10.4134/BKMS.2006.43.4.847
[12]Qin, X.; Cho, S. Y.; Kim, J. K.: Convergence theorems on asymptotically pseudocontractive mappings in the intermediate sense, Fixed point theory and applications 2010 (2010)
[13]Zegeye, H.; Shahzad, N.: Strong convergence theorems for a finite family of asymptotically nonexpansive mappings and semigroups, Nonlinear analysis 69, 4496-4503 (2008) · Zbl 1168.47056 · doi:10.1016/j.na.2007.11.005
[14]Zegeye, H.; Shahzad, N.: A hybrid approximation method for equilibrium, variational inequality and fixed point problems, Nonlinear analysis: hybrid systems 4, 619-630 (2010)
[15]Alber, Ya.: Metric and generalized projection operators in Banach spaces: properties and applications, Leture notes in pure and appl. Math. 178, 15-50 (1996) · Zbl 0883.47083
[16]Kamimura, S.; Takahashi, W.: Strong convergence of proximal-type algorithm in a Banach space, SIAM journal on optimization 13, 938-945 (2002) · Zbl 1101.90083 · doi:10.1137/S105262340139611X
[17]Reich, S.: A weak convergence theorem for the alternating method with Bergman distance, Leture notes in pure and appl. Math. 178, 313-318 (1996) · Zbl 0943.47040
[18]Tan, K. -K.; Xu, H. K.: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, Journal of mathematical analysis and applications 178, 301-308 (1993) · Zbl 0895.47048 · doi:10.1006/jmaa.1993.1309
[19]Browder, F. E.; Petryshyn, W. V.: Construction of fixed points of nonlinear mappings in Hilbert spaces, Journal of mathematical analysis and applications 20, 197-228 (1967) · Zbl 0153.45701 · doi:10.1016/0022-247X(67)90085-6
[20]Marino, G.; Xu, H. K.: Weak and strong convergence theorems for strictly pseudo-contractions in Hilbert spaces, Journal of mathematical analysis and applications 329, No. 1, 336-346 (2007) · Zbl 1116.47053 · doi:10.1016/j.jmaa.2006.06.055
[21]Liu, Q. H.: Convergence theorems of the sequence of iterates for asymptotically demicontractive and hem-contractive mappings, Nonlinear analysis 26, No. 11, 1838-1842 (1996) · Zbl 0861.47047 · doi:10.1016/0362-546X(94)00351-H
[22]Chang, S. -S.; Huang, J.; Wang, X.; Kim, J. K.: Implicite iteration processs for common fixed points of strictly asymptotically pseudocontractive mappings in Banach spaces, Fixed point theory and applications 2008 (2008) · Zbl 1219.47129 · doi:10.1155/2008/324575
[23]Kim, T. K.; Xu, H. K.: Convergence of the modified Mann’s iteration method for asymptotically strict pseudocontractions, Nonlinear analysis 68, No. 9, 2828-2836 (2008) · Zbl 1220.47100 · doi:10.1016/j.na.2007.02.029
[24]Sahu, D. R.; Xu, H. K.; Yao, J. C.: Asymptotically strict pseudocontractive mappings in the intermediate sense, Nonlinear analysis 70, No. 10, 3502-3511 (2009) · Zbl 1221.47122 · doi:10.1016/j.na.2008.07.007