zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Non-standard finite difference schemes for solving fractional-order Rössler chaotic and hyperchaotic systems. (English) Zbl 1228.65119
Summary: The non-standard finite difference method (for short NSFD) is implemented to study the dynamic behaviors in the fractional-order Rössler chaotic and hyperchaotic systems. The Grünwald-Letnikov method is used to approximate the fractional derivatives. We found that the lowest value to have chaos in this system is 2·1 and hyperchaos exists in the fractional-order Rössler system of order as low as 3·8. Numerical results show that the NSFD approach is easy to implement and accurate when applied to differential equations of fractional order.
65L12Finite difference methods for ODE (numerical methods)
37D45Strange attractors, chaotic dynamics
34A08Fractional differential equations
26A33Fractional derivatives and integrals (real functions)
34C28Complex behavior, chaotic systems (ODE)
45J05Integro-ordinary differential equations
[1]G.M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, vol. 371, 2002, pp. 461–580. · Zbl 0999.82053 · doi:10.1016/S0370-1573(02)00331-9
[2]Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J.: Fractional calculus models and numerical methods, (2009)
[3]Heymans, N.; Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives, Rheol. acta 45, 765-771 (2006)
[4]Podlubny, I.: Fractional differential equations, (1999)
[5]Magin, R. L.: Fractional calculus models of complex dynamics in biological tissues, Comput. math. Appl. 59, 1586-1593 (2010) · Zbl 1189.92007 · doi:10.1016/j.camwa.2009.08.039
[6]Momani, S.; Odibat, Z.: Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method, Appl. math. Comput. 177, No. 2, 488-494 (2006) · Zbl 1096.65131 · doi:10.1016/j.amc.2005.11.025
[7]Odibat, Z.; Momani, S.: The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics, Comput. math. Appl. 58, 11-12 (2009) · Zbl 1189.65254 · doi:10.1016/j.camwa.2009.03.009
[8]Diethelm, K.; Ford, N. J.: Analysis of fractional differential equations, J. math. Anal. appl. 265, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194
[9]Diethelm, K.; Ford, N. J.; Freed, A. D.: A predictorcorrector approach for the numerical solution of fractional differential equations, Nonlinear dyn. 29, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[10]Li, C. P.; Peng, G. J.: Chaos in Chen’s system with a fractional order, Chaos solitons fractals 22, 443-450 (2004) · Zbl 1060.37026 · doi:10.1016/j.chaos.2004.02.013
[11]Li, C. P.; Dao, X. H.; Guo, P.: Fractional derivatives in complex plane, Nonlinear anal. TMA 71, 1857-1869 (2009)
[12]Li, C. P.; Wang, Y. H.: Numerical algorithm based on Adomian decomposition for fractional differential equations, Comput. math. Appl. 57, 1672-1681 (2009) · Zbl 1186.65110 · doi:10.1016/j.camwa.2009.03.079
[13]Zhou, T. S.; Li, C. P.: Synchronization in fractional-order differential systems, Physica D 212, 111-125 (2005) · Zbl 1094.34034 · doi:10.1016/j.physd.2005.09.012
[14]Cang, J.; Tan, Y.; Xu, H.; Liao, S. J.: Series solutions of non-linear Riccati differential equations with fractional order, Chaos solitons fractals 40, 1-9 (2009) · Zbl 1197.34006 · doi:10.1016/j.chaos.2007.04.018
[15]Erjaee, G. H.: Numerical bifurcation of predator–prey fractional differential equations with a constant rate harvesting, J. phys. Conf. ser. 96, 12-45 (2009)
[16]G. Hussian, M. Alnaser, S. Momani, Non-standard discretization of fractional differential equations, in: Proceeding of 8th Seminar of Differential Equations and Dynamical Systems in Isfahan, Iran, 2008.
[17]Li, C. P.; Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations, Physica A 341, 55-61 (2004)
[18]Mickens, R. E.: Exact solutions to a finite-difference model of a nonlinear reaction-advection equation: implications for numerical analysis, Numer. methods partial differential equations 5, 313-325 (1989) · Zbl 0693.65059 · doi:10.1002/num.1690050404
[19]Mickens, R. E.; Smith, A.: Finite-difference models of ODE’s: influence of denominator functions, J. franklin inst. 327, 143-149 (1990)
[20]Mickens, R. E.: Nonstandard finite difference models of differential equations, (1994) · Zbl 0810.65083
[21]Mickens, R. E.: Nonstandard finite difference schemes for reaction–diffusion equations, Numer. methods partial differential equations 15, 201-214 (1999) · Zbl 0926.65085 · doi:10.1002/(SICI)1098-2426(199903)15:2<201::AID-NUM5>3.0.CO;2-H
[22]Mickens, R. E.: Advances in the applications of nonstandard finite difference schemes, (2005)
[23]R.E. Mickens, Applications of Nonstandard Finite Difference Schemes, Singapore, 2000.
[24]Rössler, O. E.: An equation for continuous chaos, Phys. lett. A 57, 397-398 (1976)
[25]Rössler, O. E.: An equation for hybercaos chaos, Phys. lett. A 71, 155-157 (1979) · Zbl 0996.37502 · doi:10.1016/0375-9601(79)90150-6
[26]Mickens, R. E.: Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition, Numer. methods partial differential equations 23, 672-691 (2007) · Zbl 1114.65094 · doi:10.1002/num.20198
[27]Oldham, K. B.; Spanier, J.: The fractional calculus, (1974)
[28]Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations, (1993)
[29]Podlubny, I.: Fractional differential equations, (1999)
[30]Li, C. P.; Deng, W. H.: Remarks on fractional derivatives, Appl. math. Comput. 187, 777-784 (2007) · Zbl 1125.26009 · doi:10.1016/j.amc.2006.08.163