zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. (English) Zbl 1228.65126
Summary: We state and prove a new formula expressing explicitly the derivatives of shifted Chebyshev polynomials of any degree and for any fractional-order in terms of shifted Chebyshev polynomials themselves. We develop also a direct solution technique for solving the linear multi-order fractional differential equations (FDEs) with constant coefficients using a spectral tau method. The spatial approximation with its fractional-order derivatives (described in the Caputo sense) are based on shifted Chebyshev polynomials T L,n (x) with x(0,L),L>0 and n is the polynomial degree. We presented a shifted Chebyshev collocation method with shifted Chebyshev-Gauss points used as collocation nodes for solving nonlinear multi-order fractional initial value problems. Several numerical examples are considered aiming to demonstrate the validity and applicability of the proposed techniques and to compare with the existing results.
MSC:
65L60Finite elements, Rayleigh-Ritz, Galerkin and collocation methods for ODE
34A08Fractional differential equations
26A33Fractional derivatives and integrals (real functions)
45J05Integro-ordinary differential equations
References:
[1]Magin, R. L.: Fractional calculus in bioengineering, (2006)
[2]Dalir, M.; Bashour, M.: Applications of fractional calculus, Appl. math. Sci. 4, 1021-1032 (2010) · Zbl 1195.26011 · doi:http://www.m-hikari.com/ams/ams-2010/ams-21-24-2010/index.html
[3]Das, S.: Functional fractional calculus for system identification and controls, (2008)
[4]Podlubny, I.: Fractional differential equations, (1999)
[5]Amairi, M.; Aoun, M.; Najar, S.; Abdelkrim, M. N.: A constant enclosure method for validating existence and uniqueness of the solution of an initial value problem for a fractional differential equation, Appl. math. Comput. 217, 2162-2168 (2010)
[6]Deng, J.; Ma, L.: Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations, Appl. math. Lett. 23, 676-680 (2010) · Zbl 1201.34008 · doi:10.1016/j.aml.2010.02.007
[7]Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, (2006)
[8]El-Sayed, A. M. A.; El-Kalla, I. L.; Ziad, E. A. A.: Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations, Appl. numer. Math. 60, 788-797 (2010) · Zbl 1192.65092 · doi:10.1016/j.apnum.2010.02.007
[9]Momani, S.; Odibat, Z.: Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. lett. A 365, 345-350 (2007) · Zbl 1203.65212 · doi:10.1016/j.physleta.2007.01.046
[10]F. Dal, Application of variational iteration method to fractional Hyperbolic partial differential equations, Math. Problems Eng., doi:10.1155/2009/824385. · Zbl 1190.65185 · doi:10.1155/2009/824385
[11]Odibat, Z.; Momani, S.; Xu, H.: A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations, Appl. math. Modell. 34, 593-600 (2010) · Zbl 1185.65139 · doi:10.1016/j.apm.2009.06.025
[12]Diethelm, K.; Ford, N. J.; Freed, A. D.: A predictor – corrector approach for the numerical solution of fractional differential equations, Nonlinear dynam. 29, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[13]Kumer, P.; Agrawal, O. P.: An approximate method for numerical solution of fractional differential equations, Signal process. 84, 2602-2610 (2006) · Zbl 1172.94436 · doi:10.1016/j.sigpro.2006.02.007
[14]Saadatmandi, A.; Dehghan, M.: A new operational matrix for solving fractional-order differential equations, Comput. math. Appl. 59, 1326-1336 (2010) · Zbl 1189.65151 · doi:10.1016/j.camwa.2009.07.006
[15]Ghoreishi, F.; Yazdani, S.: An extension of the spectral tau method for numerical solution of multi-order fractional differential equations with convergence analysis, Comput. math. Appl. 61, 30-43 (2011) · Zbl 1207.65108 · doi:10.1016/j.camwa.2010.10.027
[16]S.K. Vanani, A. Aminataei, Tau approximate solution of fractional partial differential equations, Comput. Math. Appl., doi:10.1016/j.camwa.2011.03.013.
[17]Esmaeili, S.; Shamsi, M.: A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations, Commun. nonlinear sci. Numer. simul. 16, 3646-3654 (2011) · Zbl 1226.65062 · doi:10.1016/j.cnsns.2010.12.008
[18]Pedas, A.; Tamme, E.: On the convergence of spline collocation methods for solving fractional differential equations, J. comput. Appl. math. 235, 3502-3514 (2011) · Zbl 1217.65154 · doi:10.1016/j.cam.2010.10.054
[19]Doha, E. H.; Abd-Elhameed, W. M.; Bhrawy, A. H.: Efficient spectral ultraspherical-Galerkin algorithms for the direct solution of 2nth-order linear differential equations, Appl. math. Modell. 33, 1982-1996 (2009) · Zbl 1205.65224 · doi:10.1016/j.apm.2008.05.005
[20]Doha, E. H.; Bhrawy, A. H.: Efficient spectral-Galerkin algorithms for direct solution for second-order differential equations using Jacobi polynomials, Numer. algor. 42, 137-164 (2006) · Zbl 1103.65119 · doi:10.1007/s11075-006-9034-6
[21]Doha, E. H.; Bhrawy, A. H.: Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials, Appl. numer. Math. 58, 1224-1244 (2008) · Zbl 1152.65112 · doi:10.1016/j.apnum.2007.07.001
[22]Miller, K.; Ross, B.: An introduction to the fractional calaulus and fractional differential equations, (1993)
[23]Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, part II, J. roy austral. Soc. 13, 529-539 (1967)
[24]Diethelm, K.; Ford, N. J.: Multi-order fractional differential equations and their numerical solutions, Appl. math. Comput. 154, 621-640 (2004) · Zbl 1060.65070 · doi:10.1016/S0096-3003(03)00739-2
[25]El-Mesiry, A. E. M.; El-Sayed, A. M. A.; El-Saka, H. A. A.: Numerical methods for multi-term fractional (arbitrary) orders differential equations, Appl. math. Comput. 160, 683-699 (2005) · Zbl 1062.65073 · doi:10.1016/j.amc.2003.11.026
[26]Ford, N. J.; Connolly, J. A.: Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations, J. comput. Appl. math. 229, 382-391 (2009) · Zbl 1166.65066 · doi:10.1016/j.cam.2008.04.003
[27]Abdulaziz, O.; Hashim, I.; Momani, S.: Application of homotopy-perturbation method to fractional ivps, J. comput. Appl. math. 216, 574-584 (2008) · Zbl 1142.65104 · doi:10.1016/j.cam.2007.06.010
[28]Hashim, I.; Abdulaziz, O.; Momani, S.: Homotopy analysis method for fractional ivps, Commun. nonlinear sci. Numer. simul. 14, 674-684 (2009) · Zbl 1221.65277 · doi:10.1016/j.cnsns.2007.09.014