zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials. (English) Zbl 1228.65132
Summary: This paper presents a computational technique based on the collocation method and Müntz polynomials for the solution of fractional differential equations. An appropriate representation of the solution via the Müntz polynomials reduces its numerical treatment to the solution of a system of algebraic equations. The main advantage of the present method is its superior accuracy and exponential convergence. Consequently, one can obtain good results even by using a small number of collocation points. The accuracy and performance of the proposed method are examined by means of some numerical experiments.
65L70Error bounds (numerical methods for ODE)
34A08Fractional differential equations
26A33Fractional derivatives and integrals (real functions)
45J05Integro-ordinary differential equations
[1]Ross, B.: The development of fractional calculus 1695–1900, Hist. math. 4, No. 1, 75-89 (1977)
[2], Applications of fractional calculus in physics (2000)
[3]Oldham, K. B.; Spanier, J.: The fractional calculus, (1974)
[4]Podlubny, I.: Fractional differential equations, (1999)
[5]Rossikhin, Y. A.; Shitikova, M. V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent result, Appl. mech. Rev. 63 (2010)
[6]Luchko, Yu.; Rivero, M.; Trujillo, J. J.; Velasco, M. P.: Fractional models, non-locality, and complex systems, Comput. math. Appl. 59, No. 3, 1048-1056 (2010) · Zbl 1189.37095 · doi:10.1016/j.camwa.2009.05.018
[7]Machado, J. T.; Kiryakova, V.; Mainardi, F.: Recent history of fractional calculus, Commun. nonlinear sci. Numer. simul. 16, No. 3, 1140-1153 (2011) · Zbl 1221.26002 · doi:10.1016/j.cnsns.2010.05.027
[8]Diethelm, K.: The analysis of fractional differential equations, (2010)
[9]Ford, N. J.; Connolly, J. A.: Comparison of numerical methods for fractional differential equations, Commun. pure appl. Anal. 5, No. 2, 289-307 (2006) · Zbl 1133.65115 · doi:10.3934/cpaa.2006.5.289
[10]Diethelm, K.; Ford, J. M.; Ford, N. J.; Weilbeer, M.: Pitfalls in fast numerical solvers for fractional differential equations, J. comput. Appl. math. 186, No. 2, 482-503 (2006) · Zbl 1078.65550 · doi:10.1016/j.cam.2005.03.023
[11]Agrawal, O. P.; Kumar, P.: Comparison of five numerical schemes for fractional differential equations, , 43-60 (2007) · Zbl 1128.65105 · doi:10.1007/978-1-4020-6042-7_4
[12]Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Yu.: Algorithms for the fractional calculus: a selection of numerical methods, Comput. methods appl. Mech. engrg. 194, 743-773 (2005) · Zbl 1119.65352 · doi:10.1016/j.cma.2004.06.006
[13]Esmaeili, S.; Shamsi, M.: A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations, Commun. nonlinear sci. Numer. simul. 16, No. 9, 3646-3654 (2011) · Zbl 1226.65062 · doi:10.1016/j.cnsns.2010.12.008
[14]Garrappa, R.; Popolizio, M.: On accurate product integration rules for linear fractional differential equations, J. comput. Appl. math. 235, No. 5, 1085-1097 (2011) · Zbl 1206.65176 · doi:10.1016/j.cam.2010.07.008
[15]Ghoreishi, F.; Yazdani, S.: An extension of the spectral tau method for numerical solution of multi-order fractional differential equations with convergence analysis, Comput. math. Appl. 61, No. 1, 30-43 (2011) · Zbl 1207.65108 · doi:10.1016/j.camwa.2010.10.027
[16]Li, C.; Wang, Y.: Numerical algorithm based on Adomian decomposition for fractional differential equations, Comput. math. Appl. 57, No. 10, 1672-1681 (2009) · Zbl 1186.65110 · doi:10.1016/j.camwa.2009.03.079
[17]Lubich, C.: Discretized fractional calculus, SIAM J. Math. anal. 17, No. 3, 704-719 (1986) · Zbl 0624.65015 · doi:10.1137/0517050
[18]Luchko, Yu.; Gorenflo, R.: An operational method for solving fractional differential equations with the Caputo derivatives, Acta math. Vietnam 24, No. 2, 207-233 (1999) · Zbl 0931.44003
[19]Saadatmandi, A.; Dehghan, M.: A new operational matrix for solving fractional-order differential equations, Comput. math. Appl. 59, No. 3, 1326-1336 (2010) · Zbl 1189.65151 · doi:10.1016/j.camwa.2009.07.006
[20]Li, X.; Xu, C.: A space–time spectral method for the time fractional diffusion equation, SIAM J. Numer. anal. 47, No. 3, 2108-2131 (2009) · Zbl 1193.35243 · doi:10.1137/080718942
[21]Quarteroni, A.; Valli, A.: Numerical approximation of partial differential equations, (1997)
[22]Trefethen, L. N.: Spectral methods in Matlab, (2000)
[23]Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A.: Spectral methods. Fundamentals in single domains, (2006)
[24]Khater, A. H.; Temsah, R. S.: Numerical solutions of the generalized Kuramoto–Sivashinsky equation by Chebyshev spectral collocation methods, Comput. math. Appl. 56, No. 6, 1465-1472 (2008) · Zbl 1155.65381 · doi:10.1016/j.camwa.2008.03.013
[25]Borwein, P.; Erdélyi, T.; Zhang, J.: Müntz systems and orthogonal müntz–Legendre polynomials, Trans. amer. Math. soc. 342, No. 2, 523-542 (1994) · Zbl 0799.41015 · doi:10.2307/2154639
[26]Mccarthy, P. C.; Sayre, J. E.; Shawyer, B. L. R.: Generalized Legendre polynomials, J. math. Anal. appl. 177, 530-537 (1993) · Zbl 0782.33007 · doi:10.1006/jmaa.1993.1275
[27]Milovanović, G. V.: Müntz orthogonal polynomials and their numerical evaluation, Internat. ser. Numer. math. 131, 179-194 (1999) · Zbl 0941.65013
[28]Gautschi, W.: Orthogonal polynomials: computation and approximation, (2004)
[29]Szego, G.: Orthogonal polynomials, (1975) · Zbl 0305.42011
[30]Gautschi, W.: On generating orthogonal polynomials, SIAM J. Sci. stat. Comput. 3, No. 3, 289-317 (1982) · Zbl 0482.65011 · doi:10.1137/0903018
[31]Golub, G. H.; Welsch, J. H.: Calculation of Gauss quadrature rules, Math. comp. 23, 221-230 (1969) · Zbl 0179.21901 · doi:10.2307/2004418
[32]Golub, G. H.; Meurant, G.: Matrices, moments and quadrature with applications, (2010)
[33]Ortiz, E. L.; Pinkus, A.: Herman müntz: a mathematician’s odyssey, Math. intelligencer 27, No. 1, 22-31 (2005) · Zbl 1154.01326 · doi:10.1007/BF02984810
[34]Cheney, E. W.: Introduction to approximation theory, (1998) · Zbl 0912.41001
[35]Gorenflo, R.; Loutchko, J.; Luchko, Yu.: Computation of the Mittag-Leffler function and its derivatives, Fract. calc. Appl. anal. 5, 491-518 (2002) · Zbl 1027.33016
[36]Kiryakova, V.: The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus, Comput. math. Appl. 59, No. 5, 1885-1895 (2010) · Zbl 1189.33034 · doi:10.1016/j.camwa.2009.08.025
[37]I. Podlubny, M. Kacenak, Matlab implementation of the Mittag-Leffler function, 2005–2009. http://www.mathworks.com.
[38]Seybold, H.; Hilfer, R.: Numerical algorithm for calculating the generalized Mittag-Leffler function, SIAM J. Numer. anal. 47, No. 1, 69-88 (2008) · Zbl 1190.65033 · doi:10.1137/070700280
[39]Odibat, Z.; Momani, S.: Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order, Chaos solitons fractals 36, No. 1, 167-174 (2008) · Zbl 1152.34311 · doi:10.1016/j.chaos.2006.06.041