zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical solution of fractional differential equations using the generalized block pulse operational matrix. (English) Zbl 1228.65135
Summary: The Riemann-Liouville fractional integral for repeated fractional integration is expanded in block pulse functions to yield the block pulse operational matrices for the fractional order integration. Also, the generalized block pulse operational matrices of differentiation are derived. Based on the above results we propose a way to solve the fractional differential equations. The method is computationally attractive and applications are demonstrated through illustrative examples.
MSC:
65L99Numerical methods for ODE
34A08Fractional differential equations
26A33Fractional derivatives and integrals (real functions)
45J05Integro-ordinary differential equations
References:
[1]Laroche, E.; Knittel, D.: An improved linear fractional model for robustness analysis of a winding system, Control eng. Pract. 13, 659-666 (2005)
[2]Calderon, A.; Vinagre, B.; Feliu, V.: Fractional order control strategies for power electronic buck converters, Signal process. 86, 2803-2819 (2006) · Zbl 1172.94377 · doi:10.1016/j.sigpro.2006.02.022
[3]Sabatier, J.; Aoun, M.; Oustaloup, A.; Grgoire, G.; Ragot, F.; Roy, P.: Fractional system identification for lead acid battery state of charge estimation, Signal process. 86, 2645-2657 (2006) · Zbl 1172.93399 · doi:10.1016/j.sigpro.2006.02.030
[4]Feliu-Batlle, V.; Perez, R.; Rodriguez, L.: Fractional robust control of Main irrigation canals with variable dynamic parameters, Control eng. Pract. 15, 673-686 (2007)
[5]Vinagre, B.; Monje, C.; Calderon, A.; Suarez, J.: Fractional PID controllers for industry application. A brief introduction, J. vib. Control 13, 1419-1430 (2007) · Zbl 1171.70012 · doi:10.1177/1077546307077498
[6]Monje, C.; Vinagre, B.; Feliu, V.; Chen, Y.: Tuning and auto-tuning of fractional order controllers for industry applications, Control eng. Pract. 16, 798-812 (2008)
[7]Tavazoei, M.; Haeri, M.: Chaos control via a simple fractional-order controller, Phys. lett. A 372, 798-807 (2008) · Zbl 1217.70022 · doi:10.1016/j.physleta.2007.08.040
[8]Tavazoei, M.; Haeri, M.; Jafari, S.; Bolouki, S.; Siami, M.: Some applications of fractional calculus in suppression of chaotic oscillations, IEEE trans. Ind. electron. 55, 4094-4101 (2008)
[9]Shawagfeh, N. T.: Analytical approximate solutions for nonlinear fractional differential equations, Appl. math. Comput. 131, 517-529 (2002) · Zbl 1029.34003 · doi:10.1016/S0096-3003(01)00167-9
[10]Das, S.: Analytical solution of a fractional diffusion equation by variational iteration method, Comput. math. Appl. 57, 483-487 (2009) · Zbl 1165.35398 · doi:10.1016/j.camwa.2008.09.045
[11]Arikoglu, A.; Ozkol, I.: Solution of fractional differential equations by using differential transform method, Chaos solitons fractals 34, 1473-1481 (2007) · Zbl 1152.34306 · doi:10.1016/j.chaos.2006.09.004
[12]Saadatmandi, A.; Dehghan, M.: A new operational matrix for solving fractional order differential equations, Comput. math. Appl. 59, 1326-1336 (2010) · Zbl 1189.65151 · doi:10.1016/j.camwa.2009.07.006
[13]Dehghan, M.; Manafian, J.; Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. methods partial differential equations 26, 448-479 (2010) · Zbl 1185.65187 · doi:10.1002/num.20460
[14]Dehghan, M.; Herris, J. Manafian; Saadatmandi, A.: The solution of the linear fractional partial differential equations using the homotopy analysis method, Z. naturforsch. 65a, 935-949 (2010)
[15]Momani, S.; Odibat, Z.: Numerical comparison of methods for solving linear differential equations of fractional order, Chaos solitons fractals 31, 1248-1255 (2007) · Zbl 1137.65450 · doi:10.1016/j.chaos.2005.10.068
[16]Odibat, Z.; Shawagfeh, N.: Generalized Taylor’s formula, Appl. math. Comput. 186, 286-293 (2007) · Zbl 1122.26006 · doi:10.1016/j.amc.2006.07.102
[17]I. Podlubny, The Laplace transform method for linear differential equations of the fractional order, 1997, eprint arXiv:funct-an/9710005.
[18]Chen, C.; Tsay, Y.; Wu, T.: Walsh operational matrices for fractional calculus and their application to distributed systems, J. franklin inst. 303, 267-284 (1977) · Zbl 0377.42004 · doi:10.1016/0016-0032(77)90029-1
[19]Hwang, C.; Shih, Y.: Laguerre operational matrices for fractional calculus and applications, Internat. J. Control 34, 577-584 (1981) · Zbl 0469.93033 · doi:10.1080/00207178108922549
[20]Maione, G.: Inverting fractional order transfer functions through Laguerre approximation, Systems control lett. 52, 387-393 (2004) · Zbl 1157.26305 · doi:10.1016/j.sysconle.2004.02.014
[21]Maione, G.: A digital, noninteger order, differentiator using Laguerre orthogonal sequences, Int. J. Intell. syst. 11, 77-81 (2006)
[22]Chen, C.; Hsiao, C.: A state-space approach to Walsh series solution of linear systems, Int. J. Syst. sci. 6, 833-858 (1975) · Zbl 0311.93015 · doi:10.1080/00207727508941868
[23]Glabisz, W.: Direct Walsh-wavelet packet method for variational problems, Appl. math. Comput. 159, 769-781 (2004) · Zbl 1063.65052 · doi:10.1016/j.amc.2003.11.002
[24]Chyi, H.; Yen-Ping, S.: Solution of population balance equations via block pulse functions, Chem. eng. J. 25, 39-45 (1982)
[25]Deb, A.; Sarkar, G.; Bhattacharjee, M.; Sen, S. K.: All-integrator approach to linear SISO control system analysis using block pulse functions (BPF), J. franklin inst. 334, 319-335 (1997) · Zbl 0874.93050 · doi:10.1016/S0016-0032(96)00054-3
[26]Maleknejad, K.; Shahrezaee, M.; Khatami, H.: Numerical solution of integral equations system of the second kind by block-pulse functions, Appl. math. Comput. 166, 15-24 (2005) · Zbl 1073.65149 · doi:10.1016/j.amc.2004.04.118
[27]Babolian, E.; Masouri, Z.: Direct method to solve Volterra integral equation of the first kind using operational matrix with block-pulse functions, Comput. math. Appl. 220, 51-57 (2008) · Zbl 1146.65082 · doi:10.1016/j.cam.2007.07.029
[28]Hwang, C.; Chen, M.: Analysis and optimal control of time-varying linear systems via shifted Legendre polynomials, Internat. J. Control 41, 1317-1330 (1985) · Zbl 0562.93035 · doi:10.1080/0020718508961200
[29]Paraskevopoulos, P.: Legendre series approach to identification and analysis of linear systems, IEEE trans. Automat. control 30, 585-589 (1985) · Zbl 0559.93041 · doi:10.1109/TAC.1985.1103992
[30]Wang, X. T.: Numerical solutions of optimal control for time delay systems by hybrid of block-pulse functions and Legendre polynomials, Appl. math. Comput. 184, 849-856 (2007) · Zbl 1114.65076 · doi:10.1016/j.amc.2006.06.075
[31]Maleknejad, K.; Sohrabi, S.; Rostami, Y.: Numerical solution of nonlinear Volterra integral equations of the second kind by using Chebyshev polynomials, Appl. math. Comput. 188, 123-128 (2007) · Zbl 1114.65370 · doi:10.1016/j.amc.2006.09.099
[32]Hwang, C.; Shih, Y.: Parameter identification via Laguerre polynomials, Int. J. Syst. sci. 13, 209-217 (1982) · Zbl 0475.93033 · doi:10.1080/00207728208926341
[33]Zaman, S.; Jha, A.: Parameter identification of non-linear systems using Laguerre operational matrices, Int. J. Syst. sci. 16, 625-631 (1985) · Zbl 0567.93025 · doi:10.1080/00207728508926699
[34]Razzaghi, M.; Lin, S. D.: Identification of time-varying linear and bilinear systems via Fourier series, Comput. electron. Eng. 17, 237-244 (1991) · Zbl 0757.93018 · doi:10.1016/0045-7906(91)90009-O
[35]Razzaghi, M.; Arabshahi, A.; Lin, S. D.: Identification of nonlinear differential equations via Fourier series operational matrix for repeated integration, Appl. math. Comput. 68, 189-198 (1995) · Zbl 0821.65050 · doi:10.1016/0096-3003(94)00093-J
[36]Deb, A.; Dasgupta, A.; Sarkar, G.: A new set of orthogonal functions and its application to the analysis of dynamic systems, J. franklin inst. 343, 1-26 (2006) · Zbl 1173.33306 · doi:10.1016/j.jfranklin.2005.06.005
[37]Deb, A.; Sarkar, G.; Sen, S.: Block pulse functions, the most fundamental of all piecewise constant basis functions, Int. J. Syst. sci. 25, 351-363 (1994) · Zbl 0834.42016 · doi:10.1080/00207729408928964
[38]El-Mesiry, A.; El-Sayed, A.; El-Saka, H.: Numerical methods for multiterm fractional (arbitrary) orders differential equations, Appl. math. Comput. 160, 683-699 (2005) · Zbl 1062.65073 · doi:10.1016/j.amc.2003.11.026