zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A unified stabilized mixed finite element method for coupling Stokes and Darcy flows. (English) Zbl 1228.76090
Summary: A stabilized mixed finite element method for solving the coupled Stokes and Darcy flows problem is formulated and analyzed. The approach utilizes the same nonconforming Crouzeix-Raviart element discretization on the entire domain. A discrete inf-sup condition and an optimal a priori error estimate are derived. Finally, some numerical examples verifying the theoretical predictions are presented.
76M10Finite element methods (fluid mechanics)
76S05Flows in porous media; filtration; seepage
76D07Stokes and related (Oseen, etc.) flows
[1]Beavers, G. S.; Joseph, D. D.: Boundary conditions at a naturally permeable wall, J. fluid mech. 30, 197-207 (1967)
[2]Saffman, P. G.: On the boundary condition at the surface of a porous medium, Stud. appl. Math. 50, 93-101 (1971) · Zbl 0271.76080
[3]Gartling, D. K.; Hickox, C. E.; Givler, R. C.: Simulation of coupled viscous and porous flow problems, Comp. fluid dyn. 7, 23-48 (1996) · Zbl 0879.76104 · doi:10.1080/10618569608940751
[4]Salinger, A. G.; Aris, R.; Derby, J. J.: Finite element formulations for large-scale, coupled flows in adjacent porous and open fluid domains, Int. J. Numer. methods fluids 18, 1185-1209 (1994) · Zbl 0807.76039 · doi:10.1002/fld.1650181205
[5]Discacciati, M.; Miglio, E.; Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows, Appl. numer. Math. 43, 57-74 (2002) · Zbl 1023.76048 · doi:10.1016/S0168-9274(02)00125-3
[6]Layton, W. J.; Schieweck, F.; Yotov, I.: Coupling fluid flow with porous media flow, SIAM J. Numer. anal. 40, 2195-2218 (2003) · Zbl 1037.76014 · doi:10.1137/S0036142901392766
[7]Rivière, B.; Yotov, I.: Locally conservative coupling of Stokes and Darcy flows, SIAM J. Numer. anal. 42, 1959-1977 (2005) · Zbl 1084.35063 · doi:10.1137/S0036142903427640
[8]Arbogast, T.; Brunson, D. S.: A computational method for approximating a Darcy – Stokes system governing a vuggy porous medium, Comput. geosci. 11, 207-218 (2007) · Zbl 1186.76660 · doi:10.1007/s10596-007-9043-0
[9]Fortin, M.: Old and new finite elements for incompressible flows, Int. J. Numer. meth. Fluids 1, 347-364 (1981) · Zbl 0467.76030 · doi:10.1002/fld.1650010406
[10]Burman, E.; Hansbo, P.: A unified stabilized method for Stokes and Darcy’s equations, J. comput. Appl. math. 198, 35-51 (2007) · Zbl 1101.76032 · doi:10.1016/j.cam.2005.11.022
[11]Karper, T.; Mardal, K. -A.; Winther, R.: Unified finite element discretizations of coupled Darcy – Stokes flow, Numer. methods partial differ. Eq. 25, 311-326 (2009) · Zbl 1157.76026 · doi:10.1002/num.20349
[12]Mardal, K. A.; Tai, X. -C.; Winther, R.: A robust finite element method for the Darcy – Stokes flow, SIAM J. Numer. anal. 40, 1605-1631 (2002) · Zbl 1037.65120 · doi:10.1137/S0036142901383910
[13]Burman, E.; Hansbo, P.: Stabilized Crouzeix – Raviart element for the Darcy – Stokes problem, Numer. methods partial differ. Eq. 21, 986-997 (2005) · Zbl 1077.76037 · doi:10.1002/num.20076
[14]Brezzi, F.; Fortin, M.: Mixed and hybrid finite element methods, (1991) · Zbl 0788.73002
[15]Brenner, S. C.: Korn’s inequalities for piecewise H1 vector fields, Math. comput. 73, 1067-1087 (2003) · Zbl 1055.65118 · doi:10.1090/S0025-5718-03-01579-5
[16]Crouzeix, M.; Raviart, P. -A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, Rev. française automat. Informat. recherche opérationnelle sér. Rouge 7, 33-75 (1973) · Zbl 0302.65087
[17]Thomée, V.: Galerkin finite element methods for parabolic problems, (1997)
[18]Girault, V.; Raviart, P. -A.: Finite element methods for Navier Stokes equations, (1986)