zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analytical and chpdm analysis of MHD mixed convection over a vertical flat plate embedded in a porous medium filled with water at 4 C. (English) Zbl 1228.76190
Summary: A two-dimensional mixed convection boundary-layer flow over a vertical flat plate embedded in a porous medium saturated with a water at 4 C (maximum density) and an applied magnetic field are investigated theoretically and numerically using the new Chebyshev pseudospectral differentiation matrix (ChPDM) approach. Both cases of the assisting and opposing flows are considered. Multiple similarity solutions are obtained under the power law variable wall temperature (VWT), or variable heat flux (VHF), or variable heat transfer coefficient (VHTC). The boundary-layer equations, which are partial differential equations are reduced, via the similarity transformations, to a pair of coupled of nonlinear ordinary differential equations. The resulting problem, which depends on two parameters, namely m, VWT (or VHF, or VHTC) parameter and ξ, the magnetohydrodynamic (MHD) mixed convection parameter, is analyzed analytically. Comparing with the other researcher’s results, it is found, under VWT condition, that the problem has multiple similarity solutions for -11 4<m<0 and ξ>0 (assisting flows). Solutions for ξ1 (free convection), ξ=0 (forced convection) and -1<ξ<0 (opposing flows) are also deduced. ChPDM approach is applied to validate and evidence the current analytical analysis.
MSC:
76W05Magnetohydrodynamics and electrohydrodynamics
References:
[1]Nield, D. A.; Bejan, A.: Convection in porous media, (2006)
[2]D.B. Ingham, I. Pop (Eds.), Transport Phenomena in Porous Media, Pergamon: Oxford, 1998, vol. II, vol III 2005.
[3], Handbook of porous media (2000)
[4], Convective heat transfer: mathematical and computational modelling of viscous fluids and porous media (2001)
[5], Emerging technologies and techniques in porous media (2004)
[6]Bejan, A.; Dincer, I.; Lorente, S.; Miguel, A. F.; Reis, A. H.: Porous and complex flow structures in modern technologies, (2004)
[7]Cheng, P.; Minkowycz, W. J.: Free-convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike, J. geophys. Res. 82, 2040-2044 (1977)
[8]Cheng, P.: The influence of lateral mass flux on free convection boundary layers in a saturated porous medium, Int. J. Heat mass transfer 20, 201-206 (1970)
[9]Pavlov, K. B.: Magnetohydrodynamic flow of an incompressible viscous fluid caused by deformation of a surface, Magnitnaya gidrodinamika 4, 146-147 (1974)
[10]Chakrabarti, A.; Gupta, A. S.: Hydromagnetic flow and heat transfer over a stretching sheet, Quart. appl. Math. 37, 73-78 (1979) · Zbl 0402.76012
[11]Vajravelu, K.: Hydromagnetic flow and heat transfer over a continuous moving, porous surface, Acta mech. 64, 179-185 (1986) · Zbl 0614.76114 · doi:10.1007/BF01450393
[12]Takhar, H. S.; Raptis, A.; Perdikis, C.: MHD asymmetric flow past a semi-infinite moving plate, Acta mech. 65, 287-290 (1987)
[13]H.S. Takhar, M.A. Ali, A.S. Gupta, Stability of magnetohydrodynamic flow over a stretching sheet, Liquid Metal Hydrodynamics, in: Lielpeteris and Moreau (Eds.), Kluwer Academic Publishers, Dordrecht, 1989 465 – 471.
[14]Kumari, M.; Takhar, H. S.; Nath, G.: MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux, Warm und stoffubert 25, 331-336 (1990)
[15]Andersson, H. I.: MHD flow of a viscous fluid past a stretching surface, Acta mech. 95, 227-230 (1992) · Zbl 0753.76192 · doi:10.1007/BF01170814
[16]Watanabe, T.; Pop, I.: Hall effects on magnetohydrodynamic boundary layer flow over a continuous moving flat plate, Acta mech. 108, 35-47 (1995) · Zbl 0846.76100 · doi:10.1007/BF01177326
[17]Ali, M.; Al-Yousef, F.: Laminar mixed convection boundary-layers induced by a linearly stretching permeable surface, Int. J. Heat mass transfer 45, 4241-4250 (2002) · Zbl 1006.76511 · doi:10.1016/S0017-9310(02)00142-4
[18]Aly, E. H.; Elliott, L.; Ingham, D. B.: Mixed convection boundary-layer flow over a vertical surface embedded in a porous medium, Eur. J. Mech. B fluids 22, 529-543 (2003) · Zbl 1033.76055 · doi:10.1016/S0997-7546(03)00059-1
[19]Bejan, A.; Laursen, T. A.; Vargas, J. V. C.: Nonsimilar solutions for mixed convection on a wedge embedded in a porous medium, Int. J. Heat fluid flow 16, 211-216 (1995)
[20]Guedda, M.: Multiple solutions of mixed convection boundary-layer approximations in a porous medium, Appl. math. Lett. 19, 63-68 (2006) · Zbl 1125.34006 · doi:10.1016/j.aml.2005.02.037
[21]Kumari, M.; Takhar, H. S.; Nath, G.: Mixed convection flow over a vertical wedge embedded in a highly porous medium, Heat mass transfer 37, 139-146 (2000)
[22]Merkin, J. H.; Pop, I.: Mixed convection boundary-layer on a vertical cylinder embedded in a saturated porous medium, Acta mech. 66, 251-262 (1987) · Zbl 0608.76071 · doi:10.1007/BF01184297
[23]Sparrow, E. M.; Eichhorn, R.; Gregg, J. L.: Combined forced and free convection in boundary layer flow, Phys. fluids 2, 319-328 (1959) · Zbl 0086.40601 · doi:10.1063/1.1705928
[24]Merkin, J. H.; Pop, I.: Mixed convection along a vertical surface: similarity solutions for uniform flow, Fluid dyn. Res. 30, 233-250 (2002) · Zbl 1064.76610 · doi:10.1016/S0169-5983(02)00042-4
[25]Magyari, E.; Pop, I.; Keller, B.: Exact dual solutions occurring in the Darcy mixed convection flow, technical note, Int. J. Heat mass transfer 44, 4563-4566 (2001) · Zbl 1068.76548 · doi:10.1016/S0017-9310(01)00054-0
[26]R. Nazar, I. Pop, Mixed convection boundary layer flow over a vertical surface in a porous medium with variable surface heat flux, Recent Advances and Applications in Heat and Mass Transfer IMECE, Kuwait, 2004, 87 – 97.
[27]Chamkha, A.: Hydromagnetic mixed convection stagnation flow with suction and blowing, Int. comm. Heat mass transfer 25, 417-426 (1998)
[28]Yih, K. A.: Heat source/sink effect on MHD mixed convection in stagnation flow on a vertical permeable plate in porous media, Int. comm. Heat mass transfer 3, 427-442 (1998)
[29]Abo-Eldahab, E. M.; El-Aziz, M. Abd; Salem, A. M.; Jaber, K. K.: Hall current effect on MHD mixed convection flow from an inclined continuously surface with blowing/suction and internal heat generation absorption, Appl. math. Model. 31, 1829-1846 (2007) · Zbl 1167.76381 · doi:10.1016/j.apm.2006.06.017
[30]Kumaran, V.; Pop, I.: Steady free convection boundary layer over a vertical flat plate embedded in a porous medium filled with water at 4 C, Int. J. Heat mass transfer 49, 3240-3252 (2006) · Zbl 1189.76541 · doi:10.1016/j.ijheatmasstransfer.2006.01.026
[31]Ling, S. C.; Nazar, R.; Pop, I.: Steady mixed convection boundary layer flow over a vertical flat plate embedded in a porous medium field with water at 4 C: case of variable wall temperature, Transp. por. Med. 69, 359-372 (2007)
[32]Wooding, R. A.: Convection in a saturated porous medium at large Rayleigh number or Péclet number, J. fluid mech. 15, 527-545 (1963) · Zbl 0114.19903 · doi:10.1017/S0022112063000434
[33]Moore, D. R.; Weiss, N. O.: Non linear penetrative convection, J. fluid mech. 61, 553-581 (1973)
[34]Gebhart, B.; Mollendorf, J. C.: A new density relation for pure and saline water, Deep-sea res. 24, 831-848 (1977)
[35]Goren, L.: On free convection in water at 4 C, Chem. eng. Sci. 21, 515-518 (1966)
[36]Vargas, J. V. C.; Laursen, T. A.; Bejan, A.: Nonsimilar solutions for mixed convection on a wedge embedded in a porous medium, Int. J. Heat fluid flow 16, 211-216 (1995)
[37]Sobha, V.; Ramakrishna, K.: Convective heat transfer past a vertical plate embedded in porous medium with an applied magnetic field, IE(I) j MC 84, 130-134 (2003)
[38]Oztop, H. F.; Varol, Y.; Pop, I.: Investigation of natural convection in triangular enclosure filled with porous media saturated with water near 4 C, Energy convers. Manage. 50, 1473-1480 (2009)
[39]Aly, E. H.; Benlahsen, M.; Guedda, M.: Similarity solutions of a MHD boundary-layer flow past a continuous moving surface, Int. J. Eng. sci. 45, 486-503 (2007) · Zbl 1213.76234 · doi:10.1016/j.ijengsci.2007.04.016
[40]Boyd, J. P.: Chebyshev and Fourier spectral methods, (2000)
[41]Canuto, C.; Hussaini, M. Y.; Quarterini, A.; Zang, T. A.: Spectral methods in fluid dynamics, (1988) · Zbl 0658.76001
[42]Fox, L.; Parker, I. B.: Chebyshev polynomials in numerical analysis, (1968) · Zbl 0153.17502
[43]Gottlieb, D.; Orszag, S. A.: Numerical analysis of spectral methods: theory and applications, CBMS-NSF regional conference series, Appl. math. 26 (1977) · Zbl 0412.65058
[44]Snyder, M. A.: Chebyshev methods in numerical approximation, (1966) · Zbl 0173.44102
[45]Voigt, R. G.; Gottlieb, D.; Hussaini, M. Y.: Spectral methods for partial differential equations, (1984)
[46]Greengard, L.: Spectral integration and two-point boundary value problems, SIAM J. Numer. anal. 28, 1071-1080 (1991) · Zbl 0731.65064 · doi:10.1137/0728057
[47]Elbarbary, E. M. E.: Chebyshev finite difference method for the solution of boundary-layer equations, Appl. math. Comput. 160, 487-498 (2005) · Zbl 1059.76043 · doi:10.1016/j.amc.2003.11.016
[48]Elbarbary, E. M. E.; El – Kady, M.: Chebyshev finite difference approximation for the boundary value problems, Appl. math. Comput. 139, 513-523 (2003) · Zbl 1027.65098 · doi:10.1016/S0096-3003(02)00214-X
[49]Elbarbary, E. M. E.; El-Sayed, S. M.: Higher order pseudospectral differentiation matrices, Appl. num. Math. 55, 425-438 (2005) · Zbl 1086.65016 · doi:10.1016/j.apnum.2004.12.001
[50]Guedda, M.: Similarity solutions of differential equations for boundary-layer approximations in porous media, ZAMP J. Appl. math. Phys. 56, 749-762 (2005) · Zbl 1084.34034 · doi:10.1007/s00033-005-2024-z
[51]Guedda, M.: Similarity and pseudosimilarity solutions of degenerate boundary-layer equations, Handbook of differential equations, stationary partial differential equations 4, 117-198 (2007)
[52]Guedda, M.; Ouahsine, A.: Nonlinear convection over a vertical flat plate embedded in a porous medium at a temperature of a maximum density for a power-law shear driven flow, Lamfa (2008)
[53]Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions, National bureau of standards (1964) · Zbl 0171.38503