zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Gravitational wave detection: stochastic resonance method with matched filtering. (English) Zbl 1228.83038
Summary: Along with the development of the interferometric gravitational wave detector, we enter into an epoch of the gravitational wave astronomy, which will open a brand new window for astrophysics to observe our universe. However, the gravitational wave detection is a typical weak signal detection, and this weak signal is buried in a strong instrument noise. To our knowledge, almost all of the data analysis methods in gravitational wave detection at present are based on a matched filtering. So it is desirable to take advantage of stochastic resonance methods. However, the all of the stochastic resonance methods are general based on a Fourier transformation and fall short of the matched filtering as a usable technique. In this paper we relate the stochastic resonance to the matched filtering. Our results show that the stochastic resonance can indeed be combined with the matched filtering for both the periodic and the non-periodic input signal. This encouraging result will be the first step to apply the stochastic resonance to the matched filtering in gravitational wave detection. Moreover, based on the matched filtering, we firstly propose a novel measurement method for the stochastic resonance which is valid for both the periodic and the non-periodic driven signal.
MSC:
83C35Gravitational waves
83-05Experimental papers (relativity)
85-05Experimental papers (astronomy and astrophysics)
85A25Radiative transfer (astronomy and astrophysics)
85A35Statistical astronomy
62P35Applications of statistics to physics
83F05Relativistic cosmology
References:
[1]Benzi R., Sutera A., Vulpiani A.: J. Phys. A 14, L453 (1981) · doi:10.1088/0305-4470/14/11/006
[2]Nicolis C.: Sol. Phys. 74, 473 (1981) · doi:10.1007/BF00154530
[3]Nicolis C.: Tellus 34, 1 (1982) · doi:10.1111/j.2153-3490.1982.tb01786.x
[4]Gammaitoni L., Haenggi P., Jung P., Marchesoni F.: Rev. Mod. Phys. 70, 223 (1998) · doi:10.1103/RevModPhys.70.223
[5]Wellens, T., Shatokhin, V., Buchleitner, A.: Rep. Prog. Phys. 67, 45 and the references there (2004)
[6]Bezrukov S., Vodyanoy I.: Nature (London) 378, 362 (1995) · doi:10.1038/378362a0
[7]Bezrukov S., Vodyanoy I.: ibid 385, 319 (1997)
[8]Bezrukov S., Vodyanoy I.: ibid 386, 738 (1997)
[9]Berdichevsky V., Gitterman M.: Europhys. Lett. 36, 161 (1996) · doi:10.1209/epl/i1996-00203-9
[10]Lofstedt R., Coppersmith S.: Phys. Rev. Lett. 72, 1947 (1994) · doi:10.1103/PhysRevLett.72.1947
[11]Grifoni M., Hanggi P.: Phys. Rev. Lett. 76, 1611 (1996) · doi:10.1103/PhysRevLett.76.1611
[12]Buchleitner A., Mantegna R.: Phys. Rev. Lett. 80, 3932 (1998) · doi:10.1103/PhysRevLett.80.3932
[13]Dykman M. et al.: Phys. Rev. Lett. 68, 2985 (1992) · doi:10.1103/PhysRevLett.68.2985
[14]Landau L., Lifshitz E.: Physique Statistique Sec. 124. Mir, Moscow (1984)
[15]Galdi, V., Pierro, V., Pinto, I.: Gravitational waves. In: Coccia, E., Veneziano, G., Pizzella, G. (eds.) Second Edoardo Amaldi Conference held in CERN, Switzerland, 1–4 July 1997, p. 532. World Scientific (1998)
[16]Jung P., Hanggi P.: Phys. Rev. A 44, 8032 (1991) · doi:10.1103/PhysRevA.44.8032
[17]Gong D. et al.: Phys. Rev. A 46, 3243 (1992) · doi:10.1103/PhysRevA.46.1586
[18]Gong D. et al.: Phys. Rev. A 48, 4862E (1993)
[19]Inchiosa M., Bulsara A.: Phys. Rev. E 52, 327 (1995) · doi:10.1103/PhysRevE.52.327
[20]Inchiosa M., Bulsara A.: ibid 53, R2021 (1996)
[21]Loerincz K. et al.: Phys. Lett. A 224, 63 (1996) · doi:10.1016/S0375-9601(96)00761-X
[22]Galdi V., Pierro V., Pinto I.: Phys. Rev. E 57, 6470 (1998) · doi:10.1103/PhysRevE.57.6470
[23]Gammaitoni L. et al.: Phys. Lett. A 142, 59 (1989) · doi:10.1016/0375-9601(89)90159-X
[24]Karapetyan G.: Opt. Commun. 238, 35 (2004) · doi:10.1016/j.optcom.2004.04.057
[25]Karapetyan G.: Phys. Rev. D 73, 122003 (2006) · doi:10.1103/PhysRevD.73.122003
[26]www.ligo.org
[27]Thorne, K.: 300 Years of Gravitation. In: Hawking, S., Israel, W. (eds.) pp. 330–458. Cambridge University Press, Cambridge, England (1987)
[28]Cutler C., Flanagan E.: Phys. Rev. D 49, 2658 (1994) · doi:10.1103/PhysRevD.49.2658
[29]Owen B., Sathyaprakash B.: Phys. Rev. D 60, 022002 (1999) · doi:10.1103/PhysRevD.60.022002
[30]Babak S. et al.: Classic. Quantum Gravit. 23, 5477 (2006) · Zbl 1101.85305 · doi:10.1088/0264-9381/23/18/002
[31]Babak S., Grote H., Hewitson M., Luck H., Strain K.A.: Phys. Rev. D 72, 022002 (2005) · doi:10.1103/PhysRevD.72.022002
[32]Tsunesada Y. et al.: Phys. Rev. D 71, 103005 (2005) · doi:10.1103/PhysRevD.71.103005
[33]Lofstedt R., Coppersmith S.: Phys. Rev. E 49, 4821 (1994) · doi:10.1103/PhysRevE.49.4821
[34]Heneghan C. et al.: Phys. Rev. E 54, 2228 (1996) · doi:10.1103/PhysRevE.54.R2228
[35]Greenwood P. et al.: Phys. Rev. Lett. 84, 4773 (2000) · doi:10.1103/PhysRevLett.84.4773
[36]Neiman A. et al.: Phys. Rev. Lett. 76, 4299 (1996) · doi:10.1103/PhysRevLett.76.4299
[37]Goychuk I., Hanggi P.: Phys. Rev. E 61, 4272 (2000) · doi:10.1103/PhysRevE.61.4272
[38]Robinson J., Asraf D., Bulsara A., Inchiosa M.: Phys. Rev. Lett. 81, 2850 (1998) · doi:10.1103/PhysRevLett.81.2850
[39]Collins J., Chow C., Imhoff T.: Nature (London) 376, 236 (1995) · doi:10.1038/376236a0
[40]Collins J., Chow C., Imhoff T.: Phys. Rev. E 52, 3321 (1995) · doi:10.1103/PhysRevE.52.6202
[41]Kantz H., Schreiber T.: Nonlinear time series analysis. Cambridge University Press, Cambridge (1997)
[42]Caulfield H.: Appl. Opt. 21, 4391 (1982) · doi:10.1364/AO.21.004391
[43]Hu G., Qing G., Gong D., Wen X.: Phys. Rev. A 44, 6414 (1991) · doi:10.1103/PhysRevA.44.6414
[44]Cao Z., Li P., Hu G.: Chin. Phys. Lett. 24, 882 (2006)
[45]Hu G. et al.: Phys. Rev. A 46, 3250 (1992) · doi:10.1103/PhysRevA.46.7301
[46]Gammaitoni L., Marchesoni F., Menichella-Saetta E., Santucci S.: Phys. Rev. Lett. 62, 349 (1989) · doi:10.1103/PhysRevLett.62.349
[47]Gammaitoni L., Marchesoni F., Santucci S.: Phys. Rev. Lett. 74, 1052 (1995) · doi:10.1103/PhysRevLett.74.1052
[48]Neiman A., Schimansky-Geier L.: Phys. Rev. Lett. 72, 2988 (1994) · doi:10.1103/PhysRevLett.72.2988
[49]Jia Y., Yu S., Li J.: Phys. Rev. E 62, 1869 (2000) · doi:10.1103/PhysRevE.62.1869
[50]Zhou T., Moss F., Jung P.: Phys. Rev. A 2, 3161 (1990) · doi:10.1103/PhysRevA.42.3161
[51]Risken H.: The Fokker-Planck Equation: Methods of Solution and Applications. Springer, New York (1983)
[52]Press W., Flannery B., Teukolsky S., Vetterling W.: Numerical Recipes. Cambridge University Press, Cambridge (1986)