zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Economic order quantity model for deteriorating items with planned backorder level. (English) Zbl 1228.90011
Summary: A deteriorating inventory problem with and without backorders is developed. From the literature search, this study is one of the first attempts by researchers to solve a deteriorating inventory problem with a simplified approach. The optimal solutions are compared with the classical methods for solving deteriorating inventory model. The total cost of the simplified model is almost identical to the original model.
MSC:
90B05Inventory, storage, reservoirs
References:
[1]Grubbström, R. W.; Erdem, A.: The EOQ with backlogging derived without derivatives, International journal of production economics 59, 529-530 (1999)
[2]Cárdenas-Barrón, L. E.: The economic production quantity (EPQ) with shortage derived algebraically, International journal of production economics 70, 289-292 (2001)
[3]Yang, P. C.; Wee, H. M.: The economic lot-size of the integrated vendor–buyer inventory system derived without derivatives, Optimal control applications and methods 23, 163-169 (2002) · Zbl 1072.90503 · doi:10.1002/oca.706
[4]Cárdenas-Barrón, L. E.; Wee, H. M.; Blos, M. F.: Solving the vendor–buyer integrated inventory system with arithmetic–geometric inequality, Mathematical and computer modelling 53, 991-997 (2011) · Zbl 1217.90011 · doi:10.1016/j.mcm.2010.11.056
[5]Wee, H. M.; Chung, S. L.; Yang, P. C.: Technical note – a modified EOQ model with temporary Sale price derived without derivatives, The engineering economist 48, 190-195 (2003)
[6]Chang, J. K.; Chuang, J. P. C.; Chen, H. J.: Short comments on technical note – the EOQ and EPQ models with shortages derived without derivatives, International journal production economics 97, 241-243 (2005)
[7]Sphicas, G. P.: EOQ and EPQ with linear and fixed backorder costs: two cases identified and models analyzed without calculus, International journal production economics 100, 59-64 (2006)
[8]Cárdenas-Barrón, L. E.: Optimal manufacturing batch size with rework in a single-stage production system – a simple derivation, Computers and industrial engineering 55, 758-765 (2008)
[9]Minner, S.: A note on how to compute economic order quantities without derivatives by cost comparisons, International journal production economics 105, 293-296 (2007)
[10]Wee, H. M.; Chung, C. J.: A note on the economic lot size of the integrated vendor–buyer inventory system derived without derivatives, European journal of operational research 177, 1289-1293 (2007) · Zbl 1102.90004 · doi:10.1016/j.ejor.2005.11.035
[11]Cárdenas-Barrón, L. E.: Optimizing inventory decisions in a multi-stage multi customer supply chain: a note, Transportation research part E: logistics and transportation :Review 43, 647-654 (2007)
[12]Teng, J. T.: A simple method to compute economic order quantities, European journal of operational research 198, 351-353 (2009) · Zbl 1163.90351 · doi:10.1016/j.ejor.2008.05.019
[13]L.Y. Ouyang, C.T. Chang, P. Shum, The EOQ with defective items and partially permissible delay in payments linked to order quantity derived algebraically, Central European Journal of Operations Research, doi:10.1007/s10100-0-010-0160-9.
[14]Teng, J. T.; Cárdenas-Barrón, L. E.; Lou, K. R.: The economic lot size of the integrated vendor–buyer inventory system derived without derivatives: a simple derivation, Applied mathematics and computation 217, 5972-5977 (2011)
[15]Cárdenas-Barrón, L. E.: An easy method to derive EOQ and EPQ inventory models with backorders, Computers mathematics with applications 59, 948-952 (2010) · Zbl 1189.90009 · doi:10.1016/j.camwa.2009.09.013
[16]Cárdenas-Barrón, L. E.: The derivation of EOQ/EPQ inventory models with two backorders costs using analytic geometry and algebra, Applied mathematical modelling 35, 2394-2407 (2011) · Zbl 1217.90010 · doi:10.1016/j.apm.2010.11.053
[17]Yang, P. C.; Wee, H. M.: An excess inventory model of deteriorating items taking account of present value, The engineering economist 46, 139-152 (2001)
[18]Chung, K. J.; Chang, S. L.; Yang, W. D.: The optimal cycle time for exponentially deteriorating products under trade credit financing, The engineering economist 46, 232-242 (2001)
[19]Yang, P. C.; Wee, H. M.: A collaborative inventory system with permissible delay in payment for deteriorating items, Mathematical and computer modelling 43, 209-221 (2006) · Zbl 1170.90320 · doi:10.1016/j.mcm.2005.09.029
[20]Maity, A. K.; Maity, K.; Mondal, S.; Maiti, M.: A Chebyshev approximation for solving the optimal production inventory model of deteriorating multi-item, Mathematical and computer modelling 45, 149-161 (2007) · Zbl 1173.90311 · doi:10.1016/j.mcm.2006.04.011
[21]Sana, S. S.: Demand influence by enterprises’ initiatives – a multi-item EOQ model of deteriorating and ameliorating items, Mathematical and computer modelling 52, 284-302 (2010) · Zbl 1201.90018 · doi:10.1016/j.mcm.2010.02.045
[22]Yang, P. C.; Wee, H. M.; Ho, P. C.: Sequential and global optimization for a closed-loop deteriorating inventory supply chain, Mathematical and computer modelling 52, 161-176 (2010) · Zbl 1201.90041 · doi:10.1016/j.mcm.2010.02.005
[23]Sana, S. S.: Optimal selling price and lotsize with time varying deterioration and partial backordering, Applied mathematics and computation 217, 185-194 (2010) · Zbl 1231.90055 · doi:10.1016/j.amc.2010.05.040
[24]Widyadana, G. A.; Wee, H. M.: Optimal deteriorating items production inventory models with random machine breakdown and stochastic repair time, Applied mathematical modelling 35, 3495-3508 (2011) · Zbl 1221.90024 · doi:10.1016/j.apm.2011.01.006
[25]Sana, S. S.: Price sensitive demand for perishable items – an EOQ model, Applied mathematics and computation 217, 6248-6259 (2011) · Zbl 1208.90011 · doi:10.1016/j.amc.2010.12.113
[26]Goyal, S. K.; Giri, B. C.: Recent trends in modeling of deteriorating inventory, European journal of operational research 134, 1-16 (2001) · Zbl 0978.90004 · doi:10.1016/S0377-2217(00)00248-4
[27]Zipkin, P. H.: Foundations of inventory management, (2000)
[28]Sana, S. S.: A production–inventory model in an imperfect production process, European journal of operational research 200, 451-464 (2010) · Zbl 1177.90027 · doi:10.1016/j.ejor.2009.01.041
[29]Sana, S. S.: An economic production lot size model in an imperfect production system, European journal of operational research 201, 158-170 (2010) · Zbl 1177.90133 · doi:10.1016/j.ejor.2009.02.027
[30]Sana, S. S.; Chauduri, K.: An EMQ model in as imperfect production process, International journal of systems science 41, 635-646 (2010) · Zbl 1200.90015 · doi:10.1080/00207720903144495
[31]Sana, S. S.: A production–inventory model of imperfect quality products in a three-layer supply chain, Decision support systems 50, 539-547 (2011)
[32]M.D. Roy, S.S. Sana, K Chauduri, An economic order quantity model of imperfect quality items with partial backlogging, International Journal of Systems Science, doi:10.1080/00207720903576498.
[33]Wee, H. M.; Wang, W. T.; Chung, C. J.: A modified method to compute economic order quantities without derivatives by cost-difference comparisons, European journal of operational research 194, 336-338 (2009) · Zbl 1179.90025 · doi:10.1016/j.ejor.2008.01.052
[34]Misra, R. B.: Optimum production lot size model for a system with deteriorating inventory, International journal production research 13, 495-505 (1975)
[35]Kang, S.; Kim, I. T.: A study on the price and production level of the deteriorating inventory system, International journal production research 21, 899-908 (1983) · Zbl 0542.90029 · doi:10.1080/00207548308942422
[36]Lin, G. C.; Gong, D. C.: On a production–inventory system of the deteriorating items subject to random machine breakdowns with a fixed repair time, Mathematical and computer modelling 43, 920-932 (2006) · Zbl 1180.90103 · doi:10.1016/j.mcm.2005.12.013