zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global convergence of some modified PRP nonlinear conjugate gradient methods. (English) Zbl 1228.90153
Summary: Recently, similar to [W. W. Hager and H. Zhang, SIAM J. Optim. 16, No. 1, 170–192 (2005; Zbl 1093.90085)], G. H. Yu [Nonlinear self-scaling conjugate gradient methods for large-scale optimization problems. PhD-Thesis, Sun Yat-Sen University (2007)] and G. Yuan [Optim. Lett. 3, No. 1, 11–21 (2009; Zbl 1154.90623)] proposed modified PRP conjugate gradient methods which generate sufficient descent directions without any line searches. In order to obtain the global convergence of their algorithms, they need the assumption that the stepsize is bounded away from zero. In this paper, we take a little modification to these methods such that the modified methods retain sufficient descent property. Without requirement of the positive lower bound of the stepsize, we prove that the proposed methods are globally convergent. Some numerical results are also reported.
MSC:
90C52Methods of reduced gradient type
90C30Nonlinear programming
References:
[1]Hestenes M.R., Stiefel E.L.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. Sect. B 49, 409–432 (1952) · doi:10.6028/jres.049.044
[2]Fletcher R., Reeves C.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964) · Zbl 0132.11701 · doi:10.1093/comjnl/7.2.149
[3]Polak B., Ribiére G.: Note surla convergence des méthodes de directions conjuguées. Rev. Fr. Inf. Rech. Operatonelle 3e Année 16, 35–43 (1969)
[4]Polyak B.T.: The conjugate gradient method in extreme problems. USSR Comput. Math. Math. Phys. 9, 94–112 (1969) · Zbl 0229.49023 · doi:10.1016/0041-5553(69)90035-4
[5]Dai Y., Yuan Y.: A nonlinear conjugate gradient with a strong global convergence properties. SIAM J. Optim. 10, 177–182 (2000) · Zbl 0957.65061 · doi:10.1137/S1052623497318992
[6]AL-Baali M.: Descent property and global convergence of the Fletcher–Reeves method with inexact line search. IMA J. Numer. Anal. 5, 121–124 (1985) · Zbl 0578.65063 · doi:10.1093/imanum/5.1.121
[7]Dai Y., Yuan Y.: Convergence properties of the Fletcher–Reeves method. IMA J. Numer. Anal. 16(2), 155–164 (1996) · Zbl 0851.65049 · doi:10.1093/imanum/16.2.155
[8]Gilbert J.C., Nocedal J.: Global convergence properties of conjugate gradient methods for optimization. SIAM. J. Optim. 2, 21–42 (1992) · Zbl 0767.90082 · doi:10.1137/0802003
[9]Grippo L., Lucidi S.: A globally convergent version of the Polak–Ribiére gradient method. Math. Program. 78, 375–391 (1997)
[10]Hager W.W., Zhang H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192 (2005) · Zbl 1093.90085 · doi:10.1137/030601880
[11]Hager W.W., Zhang H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2, 35–58 (2006)
[12]Yu, G.H.: Nonlinear self-scaling conjugate gradient methods for large-scale optimization problems. Thesis of Doctors Degree, Sun Yat-Sen University (2007)
[13]Yuan G.L.: Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems. Optim. Lett. 3, 11–21 (2009) · Zbl 1154.90623 · doi:10.1007/s11590-008-0086-5
[14]Zhang L., Zhou W., Li D.H.: Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search. Numer. Math. 104, 561–572 (2006) · Zbl 1103.65074 · doi:10.1007/s00211-006-0028-z
[15]Zhang L., Zhou W., Li D.H.: A descent modified Polak–Ribiére–Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26, 629–640 (2006) · Zbl 1106.65056 · doi:10.1093/imanum/drl016
[16]Andrei N.: A Dai-Yuan conjugate gradient algorithm with sufficient descent and conjugacy conditions for unconstrained optimization. Applied Mathematics Letters. 21, 165–171 (2008) · Zbl 1165.90683 · doi:10.1016/j.aml.2007.05.002
[17]Andrei N.: A hybrid conjugate gradient algorithm for unconstrained optimization as a convex combination of Hestenes–Stiefel and Dai–Yuan. Stud. Inf. Control 17, 55–70 (2008)
[18]Zhang, J., Xiao, Y., Wei, Z.: Nonlinear conjugate gradient methods with sufficient descent condition for large-scale unconstrained optimization. Math. Probl. Eng. Article ID 243290, 16 p. doi: 10.1155/2009/243290 (2009)
[19]Bongartz K.E., Conn A.R., Gould N.I.M., Toint P.L.: CUTE: constrained and unconstrained testing environments. ACM Trans. Math. Softw. 21, 123–160 (1995) · Zbl 0886.65058 · doi:10.1145/200979.201043
[20]Dolan E.D., Moré J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002) · Zbl 1049.90004 · doi:10.1007/s101070100263
[21]Zoutendijk G.: Nonlinear programming computational methods. In: Abadie, J. (ed.) Integer and Nonlinear Programming, pp. 37–86. North-Holland, Amsterdam (1970)