zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos generalized synchronization of new Mathieu-Van der pol systems with new Duffing-Van der Pol systems as functional system by GYC partial region stability theory. (English) Zbl 1228.93097
Summary: A new strategy by using GYC partial region stability theory is proposed to achieve generalized chaos synchronization. via using the GYC partial region stability theory, the new Lyapunov function used is a simple linear homogeneous function of states and the lower order controllers are much more simple and introduce less simulation error. Numerical simulations are given for new Mathieu-Van der Pol system and new Duffing-Van der Pol system to show the effectiveness of this strategy.
MSC:
93D15Stabilization of systems by feedback
34H10Chaos control (ODE)
34D06Synchronization
References:
[1]Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos, Phys. rev. Lett. 64, 1196-1199 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[2]Pyragas, K.: Continuous control of chaos by self-controlling feedback, Phys. lett. A 170, 421-428 (1992)
[3]Chen, Y.; Wu, X.; Gui, Z.: Global synchronization criteria for a class of third-order non-autonomous chaotic systems via linear state error feedback control, Appl. math. Model. 34, 4161-4170 (2010) · Zbl 1201.93045 · doi:10.1016/j.apm.2010.04.013
[4]Femat, R.; Perales, G. S.: On the chaos synchronization phenomenon, Phys. lett. A 262, 50-60 (1999) · Zbl 0936.37010 · doi:10.1016/S0375-9601(99)00667-2
[5]Mu, X.; Pei, L.: Synchronization of the near-identical chaotic systems with the unknown parameters, Appl. math. Model. 34, 1788-1797 (2010) · Zbl 1193.37046 · doi:10.1016/j.apm.2009.09.023
[6]Lu, J.; Wu, X.; Lu, J.: Synchronization of a unified chaotic system and the application in secure communication, Phys. lett. A 305, 365-370 (2002) · Zbl 1005.37012 · doi:10.1016/S0375-9601(02)01497-4
[7]Ge, Z. M.; Chen, C. C.: Phase synchronization of coupled chaotic multiple time scales systems, Chaos solitons fract. 20, 639-647 (2004) · Zbl 1069.34056 · doi:10.1016/j.chaos.2003.08.001
[8]Zhang, W.; Huang, J.; Wei, P.: Weak synchronization of chaotic neural networks with parameter mismatch via periodically intermittent control, Appl. math. Model. 35, 612-620 (2011) · Zbl 1205.93125 · doi:10.1016/j.apm.2010.07.009
[9]Chen, H. K.: Global chaos synchronization of new chaotic systems via nonlinear control, Chaos solitons fract. 23, 1245-1251 (2005) · Zbl 1102.37302 · doi:10.1016/j.chaos.2004.06.040
[10]Yang, X.; Cao, J.: Finite-time stochastic synchronization of complex networks original research article, Appl. math. Model. 34, 3631-3641 (2010) · Zbl 1201.37118 · doi:10.1016/j.apm.2010.03.012
[11]Weng, C. K.; Ray, A.; Dai, X.: Modelling of power plant dynamics and uncertainties for robust control synthesis, Appl. math. Model. 20, 501-512 (1996) · Zbl 0850.93056 · doi:10.1016/0307-904X(95)00169-K
[12]Park, J. H.: Adaptive synchronization of Rössler system with uncertain parameters, Chaos solitons fract. 25, 333-338 (2005) · Zbl 1125.93470 · doi:10.1016/j.chaos.2004.12.007
[13]Park, J. H.: Adaptive synchronization of hyperchaotic Chen system with uncertain parameters, Chaos solitons fract. 26, 959-964 (2005) · Zbl 1093.93537 · doi:10.1016/j.chaos.2005.02.002
[14]Wan, C.; Chang, J.; Yau, H. T.; Chen, J. L.: Nonlinear dynamic analysis of a hybrid squeeze-film damper-mounted rigid rotor lubricated with couple stress fluid and active control, Appl. math. Model. 34, 2493-2507 (2010) · Zbl 1195.70009 · doi:10.1016/j.apm.2009.11.014
[15]Tang, Y.; Fang, J. A.; Xia, M.; Gu, X.: Synchronization of Takagi – sugeno fuzzy stochastic discrete-time complex networks with mixed time-varying delays, Appl. math. Model. 34, 843-855 (2010) · Zbl 1185.93145 · doi:10.1016/j.apm.2009.07.015
[16]Ge, Z. M.; Leu, W. Y.: Anti-control of chaos of two-degrees-of- freedom louderspeaker system and chaos synchronization of different order systems, Chaos solitons fract. 20, 503-521 (2004) · Zbl 1048.37077 · doi:10.1016/j.chaos.2003.07.001
[17]Ge, Z. M.; Chen, Y. S.: Synchronization of unidirectional coupled chaotic systems via partial stability, Chaos solitons fract. 21, 101-111 (2004) · Zbl 1048.37027 · doi:10.1016/j.chaos.2003.10.004
[18]Ge, Z. M.; Chang, C. M.: Chaos synchronization and parameters identification of single time scale brushless dc motors, Chaos solitons fract. 20, 883-903 (2004) · Zbl 1071.34048 · doi:10.1016/j.chaos.2003.10.005
[19]Ge, Z. M.; Chen, Y. S.: Synchronization of unidirectional coupled chaotic systems via partial stability, Chaos solitons fract. 21, 101-111 (2004) · Zbl 1048.37027 · doi:10.1016/j.chaos.2003.10.004
[20]Ge, Z. M.; Yao, C. W.; Chen, H. K.: Stability on partial region in dynamics, J. chinese soc. Mech. eng. 15, No. 2, 140-151 (1994)
[21]Ge, Z. M.; Chen, H. K.: Three asymptotical stability theorems on partial region with applications, Jpn. J. Appl. phys. 37, 2762-2773 (1998)