zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Logic from nonlinear dynamical evolution. (English) Zbl 1228.94036
Summary: We propose a direct and flexible implementation of logic operations using the dynamical evolution of a nonlinear system. The concept involves the observation of the state of the system at different times to obtain different logic outputs. We explicitly implement the basic NAND, AND, NOR, OR and XOR logic gates, as well as multiple-input XOR and XNOR logic gates. Further we demonstrate how the single dynamical system can do more complex operations such as bit-by-bit addition in just a few iterations.
MSC:
94C10Switching theory, application of Boolean algebra; Boolean functions
65P20Numerical chaos
68Q45Formal languages and automata
03B05Classical propositional logic
03D05Automata theory in connection with logical questions
References:
[1]Sinha, S.; Ditto, W. L.: Phys. rev. Lett., Phys. rev. Lett. 81, 2156 (1998)
[2]Sinha, S.; Munakata, T.; Ditto, W. L.: Phys. rev. E, Phys. rev. E 65, 036216 (2002)
[3]Murali, K.; Sinha, S.; Ditto, W. L.: Int. J. Bifur. chaos appl. Sci. eng., Int. J. Bifur. chaos appl. Sci. eng. 13, 2669 (2003)
[4]Chlouverakis, K. E.; Adams, M. J.: Electron. lett., Electron. lett. 41, 359 (2005)
[5]Cafagna, D.; Grassi, G.: Int. sym. Signals circuits syst. (ISSCS 2005), Int. sym. Signals circuits syst. (ISSCS 2005) 2, 749 (2005)
[6]Jahed-Motlagh, M. R.; Kia, B.; Ditto, W. L.; Sinha, S.: Int. J. Bifur. chaos appl. Sci. eng., Int. J. Bifur. chaos appl. Sci. eng. 17, 1955 (2007)
[7]Murali, K.; Sinha, S.: Phys. rev. E, Phys. rev. E 75, 025201(R) (2007)
[8]Prusha, B.; Lindner, J.: Phys. lett. A, Phys. lett. A 263, 105 (1999)
[9]Crutchfield, J. P.; Young, K.: Phys. rev. Lett., Phys. rev. Lett. 63, 105 (1989)
[10]Margolus, N.: Physica D, Physica D 10, 81 (1984)
[11]Moore, C.: Phys. rev. Lett., Phys. rev. Lett. 64, 2354 (1990)
[12]Holden, A. V.; Tucker, J. V.; Zhang, H.; Poole, M. J.: Chaos, Chaos 2, 367 (1992)
[13]Toth, A.; Showalter, K. J.: J. chem. Phys., J. chem. Phys. 103, 2058 (1995)
[14]Mano, M. M.: Computer system architecture, (1993)
[15]Taubes, G.: Science, Science 277, 1935 (1997)
[16]Sinha, S.: Phys. rev. E, Phys. rev. E 49, 4832 (1994)
[17]Murali, K.; Sinha, S.: Phys. rev. E, Phys. rev. E 68, 016210 (2003)
[18]K. Murali, A. Miliotis, W.L. Ditto, S. Sinha, M.L. Spano, Preprint, unpublished, 2009