zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A Nagumo-like uniqueness theorem for fractional differential equations. (English) Zbl 1229.26013

The Nagumo uniqueness theorem for first-order ordinary differential equations

x ' +f(t,x)=0,t>0,

established by M. Nagumo [“Eine hinreichende Bedingung für die Unität der Lösung von Differentialgleichungen erster Ordnung”, Japanese Journ. of Math. 3, 107–112 (1926; JFM 52.0438.01)] has recently been generalized by A. Constantin [Proc. Japan Acad., Ser. A 86, No. 2, 41–44 (2010; Zbl 1192.34014)], where the conditions imposed on f have been replaced by

|f(t,x)|w(|x|) t,where 0 r w(s) sdsr

and w:[0,+)[0,+) is a continuous, increasing function, with w(0)=0.

In the paper under review, after a brief introduction to the subject related with Nagumo’s uniqueness result and various extensions of it, the authors give the gist of the proof of Nagumo’s result in the classical case. In the following, they obtain a variant of the classical and generalized (in the sense of Constantin) uniqueness theorem for fractional differential equations, i.e., they show uniqueness results for

0 D t α x+f(t,x)=0,t>0lim t0 [t 1-α x(t)]=x 0

with α(0,1), where 0 D t α is the Riemann-Liouville fractional derivative given by

( 0 D t α x)(t)=1 Γ(1-α)·d dt 0 t x(s) (t-s) α ds,t>0·

26A33Fractional derivatives and integrals (real functions)
34K37Functional-differential equations with fractional derivatives