zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence and multiplicity of positive solutions for nonlinear boundary value problems with a parameter. (English) Zbl 1229.34036

Summary: The nonlinear boundary value problem

-(p(t)u ' ) ' +q(t)u=λf(t,u),0tω,u(0)=u(ω),p(0)u ' (0)=p(ω)u ' (ω),

is studied. By using the fixed point index theory, some existence, multiplicity, and nonexistence results for positive solutions are derived in terms of different values of λ. The results obtained herein generalize and improve the results in the literature.

34B18Positive solutions of nonlinear boundary value problems for ODE
34B08Parameter dependent boundary value problems for ODE
47N20Applications of operator theory to differential and integral equations
34B15Nonlinear boundary value problems for ODE
[1]Agarwal, R. P.; Lü, H.; O’regan, D.: Eigenvalues and the one-dimensional p-Laplacian, J. math. Anal. appl. 266, 383-400 (2002) · Zbl 1002.34019 · doi:10.1006/jmaa.2001.7742
[2]Agarwal, R. P.; O’regan, D.; Stanek, S.: Solvability of singular Dirichlet boundary-value problems with given maximum values for positive solutions, Proc. Edinburgh math. Soc. 48, 1-19 (2005)
[3]Graef, J. R.; Kong, L.; Wang, H.: Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem, J. differential equations 245, 1185-1197 (2008) · Zbl 1203.34028 · doi:10.1016/j.jde.2008.06.012
[4]Graef, J. R.; Kong, L.: Existence results for nonlinear periodic boundary-value problems, Proc. Edinburgh math. Soc. 52, 79-95 (2009) · Zbl 1178.34024 · doi:10.1017/S0013091507000788
[5]Henderson, J.; Thompson, H. B.: Multiple symmetric positive solutions for a second order boundary value problem, Proc. amer. Math. soc. 128, 2373-2379 (2000) · Zbl 0949.34016 · doi:10.1090/S0002-9939-00-05644-6
[6]Atici, F. Merdivenci; Guseinov, G. Sh.: On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions, J. comput. Appl. math. 132, 341-356 (2001) · Zbl 0993.34022 · doi:10.1016/S0377-0427(00)00438-6
[7]Torres, P. J.: Existence of one-signed periodic solutions of some second order differential equations via a Krasnoselskii fixed point theorem, J. differential equations 190, 643-662 (2003) · Zbl 1032.34040 · doi:10.1016/S0022-0396(02)00152-3
[8]Lee, Y. H.; Sim, I.: Existence results of sign-changing solutions for singular one-dimensional p-Laplacian problems, Nonlinear anal. 68, 1195-1209 (2008) · Zbl 1138.34010 · doi:10.1016/j.na.2006.12.015
[9]Jiang, D.; Chu, J.; Zhang, M.: Multiplicity of positive periodic solutions to superlinear repulsive singular equations, J. differential equations 211, 282-302 (2005) · Zbl 1074.34048 · doi:10.1016/j.jde.2004.10.031
[10]Kim, C. G.: Existence of positive solutions for singular boundary value problems involving the one-dimensional p-Laplacian, Nonlinear anal. 70, 4259-4267 (2009) · Zbl 1162.34315 · doi:10.1016/j.na.2008.09.011
[11]Xu, X.; Ma, J.: A note on singular nonlinear boundary value problems, J. math. Anal. appl. 293, 108-124 (2004) · Zbl 1057.34007 · doi:10.1016/j.jmaa.2003.12.017
[12]Hao, X.; Liu, L.; Wu, Y.: Existence and multiplicity results for nonlinear periodic boundary value problems, Nonlinear anal. 72, 3635-3642 (2010) · Zbl 1195.34033 · doi:10.1016/j.na.2009.12.044
[13]Li, H.; Sun, J.: Positive solutions of sublinear Sturm–Liouville problems with changing sign nonlinearity, Compt. math. Appl. 58, 1808-1815 (2009) · Zbl 1197.34040 · doi:10.1016/j.camwa.2009.07.059
[14]Bai, Z.; Du, Z.: Positive solutions for some second-order four-point boundary value problems, J. math. Anal. appl. 330, 34-50 (2007) · Zbl 1115.34016 · doi:10.1016/j.jmaa.2006.07.044
[15]Deimling, K.: Nonlinear functional analysis, (1985) · Zbl 0559.47040
[16]Guo, D. J.; Lakskmikantham, V.: Nonlinear problems in abstract cones, (1988)
[17]Zeidler, E.: Nonlinear functional analysis and its applications, I. Fixed-point theorems, (1985)