zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence and uniqueness of a common fixed point on partial metric spaces. (English) Zbl 1230.54032
Summary: In this work, a general form of weak φ-contraction is considered on partial metric spaces, to get a common fixed point. It is shown that self-mappings S,T on a complete partial metric space X have a common fixed point if they are generalized weak φ-contractions.
54H25Fixed-point and coincidence theorems in topological spaces
[1]S.G. Matthews, Partial metric topology, Research Report 212, Dept. of Computer Science, University of Warwick, 1992.
[2]Matthews, S. G.: Partial metric topology, Annals of the New York Academy of sciences 728, 183-197 (1994) · Zbl 0911.54025
[3]Oltra, S.; Valero, O.: Banach’s fixed point theorem for partial metric spaces, Rend. istit. Mat. univ. Trieste 36, No. 1–2, 17-26 (2004) · Zbl 1080.54030
[4]Valero, O.: On Banach fixed point theorems for partial metric spaces, Appl. gen. Topol. 6, No. 2, 229-240 (2005) · Zbl 1087.54020
[5]Altun, I.; Sola, F.; Simsek, H.: Generalized contractions on partial metric spaces, Topology appl. 157, No. 18, 2778-2785 (2010) · Zbl 1207.54052 · doi:10.1016/j.topol.2010.08.017
[6]Altun, I.; Erduran, A.: Fixed point theorems for monotone mappings on partial metric spaces, Fixed point theory appl. 2011 (2011) · Zbl 1207.54051 · doi:10.1155/2011/508730
[7]Alber, Ya.I.; Guerre-Delabriere, S.: Principle of weakly contractive maps in Hilbert space, Advances and appl. 98, 722 (1997) · Zbl 0897.47044
[8]Rhoades, B. E.: Some theorems on weakly contractive maps, Nonlinear anal. 47, No. 4, 2683-2693 (2001) · Zbl 1042.47521 · doi:10.1016/S0362-546X(01)00388-1
[9]Boyd, D. W.; Wong, S. W.: On nonlinear contractions, Proc. amer. Math. soc. 20, 458-464 (1969) · Zbl 0175.44903 · doi:10.2307/2035677
[10]Hussain, N.; Jungck, G.: Common fixed point and invariant approximation results for noncommuting generalized (f,g)-nonexpansive maps, J. math. Anal. appl. 321, 851-861 (2006) · Zbl 1106.47048 · doi:10.1016/j.jmaa.2005.08.045
[11]Song, Y.: Coincidence points for noncommuting f-weakly contractive mappings, Int. J. Comput. appl. Math. 2, No. 1, 17-26 (2007)
[12]Song, Y.; Xu, S.: A note on common fixed-points for Banach operator pairs, Int. J. Contemp. math. Sci. 2, 1163-1166 (2007) · Zbl 1151.41311
[13]Zhang, Q.; Song, Y.: Fixed point theory for generalized φ-weak contractions, Appl. math. Lett. 22, No. 1, 75-88 (2009) · Zbl 1163.47304 · doi:10.1016/j.aml.2008.02.007
[14]Păcurar, M.; Rus, I. A.: Fixed point theory for cyclic φ-contractions, Nonlinear anal. 72, No. 3–4, 1181-1187 (2010) · Zbl 1191.54042 · doi:10.1016/j.na.2009.08.002
[15]E. Karapınar, Fixed point theory for cyclic weak -contraction, Appl. Math. Lett., in press (doi:10.1016/j.aml.2010.12.016).
[16]Abdeljawad, T.; Karapınar, E.: Quasi-cone metric spaces and generalizations of caristi kirk’s theorem, Fixed point theory appl. (2009) · Zbl 1197.54051 · doi:10.1155/2009/574387
[17]S. Moradi, Z. Fathi, E. Analouee, Common fixed point of single valued generalized φf-weak contractive mappings (in press).