zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A singular ES-FEM for plastic fracture mechanics. (English) Zbl 1230.74183
Summary: The stress and strain fields around the crack tip for power hardening material, which are singular as r approaches zero, are crucial to fracture and fatigue of structures. To simulate effectively the strain and stress around the crack tip, we develop a seven-node singular element which has a displacement field containing the HRR term and the second order term. The novel singular element is formulated based on the edge-based smoothed finite element method (ES-FEM). With one layer of these singular elements around the crack tip, the ES-FEM works very well for simulating plasticity around the crack tip based on the small strain formulation. Two examples are presented with detailed comparison with other methods. It is found that the results of the presented singular ES-FEM are closer to reference solution, which demonstrates the applicability and the effectiveness of our method for the plastic field around the crack tip.
MSC:
74S05Finite element methods in solid mechanics
74R20Anelastic fracture and damage
74G70Stress concentrations, singularities
Software:
XFEM
References:
[1]Hutchinson, J. W.: Plastic stress and strain fields at a crack tip, J. mech. Phys. solids 16, 337-347 (1968)
[2]Hutchinson, J. W.: Singular behaviour at the end of a tensile crack in a hardening material, J. mech. Phys. solids 16, 13-31 (1968) · Zbl 0166.20704 · doi:10.1016/0022-5096(68)90014-8
[3]Rice, J. R.; Rosengren, G. F.: Plane strain deformation near a crack tip in a power-law hardening material, J. mech. Phys. solids 16, 1-12 (1968) · Zbl 0166.20703 · doi:10.1016/0022-5096(68)90013-6
[4]B.L. Karihaloo, Q.Z. Xiao, Linear and nonlinear fracture mechanics, in: I. Milne, R.O. Ritchie, B.L. Karihaloo (Eds.), Comprehensive Structural Integrity, in: B.L. Karihaloo, W.G. Knauss (Eds.), Fundamental Theories and Mechanisms of Failure, vol. 2, Elsevier Pergamon, UK, 2003, pp. 81 – 212 (Chapter 2.03).
[5]Chao, Y. J.; Yang, S.; Sutton, M. A.: On the fracture of solids characterized by one or two parameters: theory and practice, J. mech. Phys. solids 42, 629-647 (1994)
[6]Yang, S.; Chao, Y. J.; Sutton, M. A.: Higher order asymptotic crack tip fields in a power-law hardening material, Engrg. fract. Mech. 45, 1-20 (1993)
[7]Belytschko, T.; Black, T.: Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. methods engrg. 45, No. 5, 601-620 (1999) · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[8]Moes, N.; Dolbow, J.; Belytschko, T.: A finite element method for crack growth without remeshing, Int. J. Numer. methods engrg. 46, No. 1, 131-150 (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[9]Belytschko, T.; Gracie, R.; Ventura, G.: A review of extended/generalized finite element methods for material modeling, Model. simul. Mater. sci. Engrg. (2009)
[10]Rabczuk, T.; Bordas, S.; Zi, G.: On three-dimensional modeling of crack growth using partition of unity methods, Comput. struct. 88, 1391-1411 (2010)
[11]Xiao, Q. Z.; Karihaloo, B. L.: Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery, Int. J. Numer. methods engrg. 66, 1378-1410 (2006) · Zbl 1122.74529 · doi:10.1002/nme.1601
[12]Xiao, Q. Z.; Karihaloo, B. L.; Liu, X. Y.: Incremental-secant modulus iteration scheme and stress recovery for simulating cracking process in quasi-brittle materials using XFEM, Int. J. Numer. methods engrg. 69, 2606-2635 (2007) · Zbl 1194.74483 · doi:10.1002/nme.1866
[13]Liu, X. Y.; Xiao, Q. Z.; Karihaloo, B. L.: XFEM for direct evaluation of mixed mode sifs in homogeneous and bi-materials, Int. J. Numer. methods engrg. 59, 1103-1118 (2004) · Zbl 1041.74543 · doi:10.1002/nme.906
[14]Karihaloo, B. L.; Xiao, Q. Z.: Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the-art review, Comput. struct. 81, No. 3, 119-129 (2003)
[15]Karihaloo, B. L.; Xiao, Q. Z.: Accurate determination of the coefficients of elastic crack tip asymptotic field by a hybrid crack element with p-adaptivity, Engrg. fract. Mech. 68, 1609-1630 (2001)
[16]Xiao, Q. Z.; Karihaloo, B. L.: An overview of a hybrid crack element and determination of its complete displacement field, Engrg. fract. Mech. 74, 1107-1117 (2007)
[17]Elguedj, T.; Gravouil, A.; Combescure, A.: Appropriate extended functions for XFEM simulation of plastic fracture mechanics, Comput. methods appl. Mech. engrg. 195, 501-515 (2006) · Zbl 1222.74041 · doi:10.1016/j.cma.2005.02.007
[18]A. Gravouil et al., Application of XFEM to 3D real cracks and elastic – plastic fatigue crack growth, in: IUTAM Symposium on Discretization Methods for Evolving Discontinuities, IUTAM Book-Series, Part 4, vol. 5, 2007, pp. 213 – 231, doi:10.1007/978-1-4020-6530-913.
[19]Khoei, A. R.; Nikbakht, M.: An enriched finite element algorithm for numerical computation of contact friction problems, Int. J. Mech. sci. 49, No. 2, 183-199 (2007)
[20]Khoei, A. R.; Nikbakht, M.: Contact friction modeling with the extended finite element method (X-FEM), J. mater. Process. technol. 177, 58-62 (2006)
[21]Khoei, A. R.; Biabanaki, S. O. R.; Anahid, M.: Extended finite element method for three-dimensional large plasticity, Comput. methods appl. Mech. engrg. 197, 1100-1114 (2008) · Zbl 1169.74611 · doi:10.1016/j.cma.2007.10.006
[22]Rabczuk, T.; Zi, G.: A meshfree method based on the local partition of unity for cohesive cracks, Comput. mech. 39, No. 6, 743-760 (2007) · Zbl 1161.74055 · doi:10.1007/s00466-006-0067-4
[23]Rabczuk, T.; Belytschko, T.: Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Int. J. Numer. methods engrg. 61, No. 13, 2316-2343 (2004) · Zbl 1075.74703 · doi:10.1002/nme.1151
[24]Rabczuk, T.; Belytschko, T.: A three dimensional large deformation meshfree method for arbitrary evolving cracks, Comput. methods appl. Mech. engrg. 196, 2777-2799 (2007) · Zbl 1128.74051 · doi:10.1016/j.cma.2006.06.020
[25]Rabczuk, T.; Zi, G.; Bordas, S.; Nguyen-Xuan, H.: A simple and robust three-dimensional cracking-particle method without enrichment, Comput. methods appl. Mech. engrg. 199, 2437-2455 (2010) · Zbl 1231.74493 · doi:10.1016/j.cma.2010.03.031
[26]Menk, A.; Bordas, S. P. A.: Numerically determined enrichment functions for the extended finite element method and applications to bi-material anisotropic fracture and polycrystals, Int. J. Numer. methods engrg. 83, No. 7, 805-828 (2010) · Zbl 1197.74182 · doi:10.1002/nme.2858
[27]Bordas, S.; Moran, B.: Enriched finite elements and level sets for damage tolerance assessment of complex structures, Engrg. fract. Mech. 73, No. 9, 1176-1201 (2006)
[28]Rabczuk, T.; Bordas, S.; Zi, G.: A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics, Comput. mech. 40, No. 3, 473-495 (2007) · Zbl 1161.74054 · doi:10.1007/s00466-006-0122-1
[29]Bordas, S.; Nguyen, P. V.; Dunant, C.; Guidoum, A.; Nguyen-Dang, H.: An extended finite element library, Int. J. Numer. methods engrg. 71, 703-732 (2007) · Zbl 1194.74367 · doi:10.1002/nme.1966
[30]Bordas, S.; Rabczuk, T.; Zi, G.: Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment, Engrg. fract. Mech. 75, No. 5, 943-960 (2008)
[31]Rabczuk, T.; Zi, G.; Bordas, S.; Nguyen-Xuan, H.: A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures, Engrg. fract. Mech. 75, 4740-4758 (2008)
[32]Nguyen, V. P.; Rabczuk, T.; Bordas, S.; Duflot, M.: Meshless methods: a review and computer implementation aspects, Math. comput. Simul. 79, 763-813 (2008) · Zbl 1152.74055 · doi:10.1016/j.matcom.2008.01.003
[33]Liu, G. R.: A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods, Int. J. Comput. methods 5, 199-236 (2008) · Zbl 1222.74044 · doi:10.1142/S0219876208001510
[34]Xuan, Z. C.; Lassila, T.; Rozza, G.; Quarteroni, A.: On computing upper and lower bounds on the outputs of linear elasticity problems approximated by the smoothed finite element method, Int. J. Numer. methods engrg. (2010)
[35]Hung, N. X.; Bordas, S.; Nguyen-Dang, H.: Smooth finite element methods: convergence, accuracy and properties, Int. J. Numer. methods engrg. 74, No. 2, 175-208 (2008) · Zbl 1159.74435 · doi:10.1002/nme.2146
[36]Hung, N. X.; Rabczuk, T.; Bordas, S.; Debongnie, J. F.: A smoothed finite element method for plate analysis, Comput. methods appl. Mech. engrg. 197, 1184-1203 (2008) · Zbl 1159.74434 · doi:10.1016/j.cma.2007.10.008
[37]Nguyen-Thanh, N.; Rabczuk, T.; Hung, N. X.; Bordas, S.: A smoothed finite element method for shell analysis, Comput. methods appl. Mech. engrg. 198, 165-177 (2008) · Zbl 1194.74453 · doi:10.1016/j.cma.2008.05.029
[38]Bordas, S.; Rabczuk, T.; Hung, N. X.; Nguyen, V. P.; Natarajan, S.; Bog, T.; Quan, D. M.; Hiep, N. V.: Strain smoothing in FEM and XFEM, Comput. struct. 88, 1419-1443 (2010)
[39]Nguyen-Thanh, N.; Rabczuk, T.; Huang, N. X.; Bordas, S.: An alternative alpha finite element method (a alpha FEM) for free and forced structural vibration using triangular meshes, J. comput. Appl. math. 233, No. 9, 2112-2135 (2010)
[40]Huang, N. X.; Rabczuk, T.; Nguyen-Thanh, N.; Nguyen-Thoi, T.; Bordas, S.: A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner – Mindlin plates, Comput. mech. 46, 679-701 (2010)
[41]Chen, J. S.; Wu, C. T.; Yoon, Y.: A stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. Numer. methods engrg. 50, 435-466 (2001) · Zbl 1011.74081 · doi:10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
[42]Liu, G. R.; Zhang, G. Y.: A normed G space and weakened weak formulation of a cell-based smoothed point interpolation method, Int. J. Comput. methods 6, No. 1, 147-179 (2009)
[43]Liu, G. R.: A G space theory and weakened weak (W2) form for a unified formulation of compatible and incompatible methods, part I: Theory and part II: Applications to solid mechanics problems, Int. J. Numer. methods engrg. 81, No. 9, 1093-1156 (2010) · Zbl 1183.74359 · doi:10.1002/nme.2720
[44]Liu, G. R.: Meshfree methods: moving beyond the finite element method, (2009)
[45]Liu, G. R.: A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods, Int. J. Comput. methods 5, No. 2, 199-236 (2008) · Zbl 1222.74044 · doi:10.1142/S0219876208001510
[46]L. Chen, H.X. Nguyen, T.T. Nguyen, K.Y. Zeng, S.C. Wu, Assessment of smoothed point interpolation methods for elastic mechanics, Commun. Numer. Methods Engrg. doi:10.1002/cnm.1251.
[47]Nourbakkhsh-Nia, N.; Liu, G. R.; Chen, L.; Zhang, Y. W.: A general construction of singular stress field in the ES-FEM method for analysis of fracture problems of mixed modes, Int. J. Comput. methods 7, 191-214 (2010)
[48]Barsoum, R. S.: On the use of isoparametric finite elements in linear fracture mechanics, Int. J. Numer. methods engrg. 10, 25-37 (1976) · Zbl 0321.73067 · doi:10.1002/nme.1620100103
[49]Barsoum, R. S.: Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements, Int. J. Numer. methods engrg. 11, 85-98 (1977) · Zbl 0348.73030 · doi:10.1002/nme.1620110109
[50]Tarancon, J. E.; Vercher, A.; Giner, E.; Fuenmayor, F. J.: Enhanced blending elements for XFEM applied to linear elastic fracture mechanics, Int. J. Numer. methods engrg. 77, No. 1, 126-148 (2009) · Zbl 1195.74199 · doi:10.1002/nme.2402
[51]Menk, A.; Bordas, S.: A robust preconditioning technique for the extended finite element method, Int. J. Numer. methods engrg. 85, No. 13, 1609-1632 (2011) · Zbl 1217.74128 · doi:10.1002/nme.3032
[52]Schweitzer, M. A.: Stable enrichment and local preconditioning in the particle-partition of unity method, Numer. math., 1-34 (2010)
[53]Natarajan, S.; Mahapatra, D. R.; Bordas, S.: Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework, Int. J. Numer. methods engrg. 83, No. 3, 269-294 (2010) · Zbl 1193.74153 · doi:10.1002/nme.2798
[54]Natarajan, S.; Bordas, S.; Mahapatra, D. R.: Numerical integration over arbitrary polygonal domains based on Schwarz – christoel conformal mapping, Int. J. Numer. methods engrg. 80, No. 1, 103-134 (2009) · Zbl 1176.74190 · doi:10.1002/nme.2589
[55]Waisman, H.; Belytschko, T.: Parametric enrichment adaptivity by the extended finite element method, Int. J. Numer. methods engrg. 73, No. 12, 1671-1692 (2008) · Zbl 1159.74436 · doi:10.1002/nme.2137
[56]Chahine, E.; Laborde, P.; Renard, Y.: A reduced basis enrichment for the extended finite element method, Math. model. Nat. phenom. 4, No. 1, 88-105 (2009) · Zbl 1160.74407 · doi:10.1051/mmnp/20094104
[57]Benson, D. J.; Bazilevs, Y.; De Luycker, E.; Hsu, M. C.; Scott, M.; Hughes, T. J. R.; Belytschko, T.: A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to XFEM, Int. J. Numer. methods engrg. 83, No. 6, 765-785 (2010) · Zbl 1197.74177 · doi:10.1002/nme.2864
[58]Narasimhan, R.; Rosakis, A. J.: A finite element analysis of small-scale yielding near a stationary crack under plane stress, J. mech. Phys. solids 1, 77-117 (1988)