zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Parallel machine scheduling with a deteriorating maintenance activity and total absolute differences penalties. (English) Zbl 1230.90103
Summary: We consider identical parallel machines scheduling problems with a deteriorating maintenance activity. In this model, each machine has a deteriorating maintenance activity, that is, delaying the maintenance increases the time required to perform it. We need to make a decision on when to schedule the rate-modifying activities and the sequence of jobs to minimize some objective function. We concentrate on two goals separately, namely, minimizing the total absolute differences in completion times (TADC) and the total absolute differences in waiting times (TADW). We show that the problems remain polynomially solvable under the proposed model.
MSC:
90B35Scheduling theory, deterministic
References:
[1]Lee, C. -Y.; Leon, V. J.: Machine scheduling with a rate-modifying activity, European journal of operational research 128, 119-128 (2001) · Zbl 0983.90020 · doi:10.1016/S0377-2217(99)00066-1
[2]Graves, G. H.; Lee, C. -Y.: Scheduling maintenance and semiresumable jobs on a single machine, Naval research logistics 46, 845-863 (1999) · Zbl 0931.90015 · doi:10.1002/(SICI)1520-6750(199910)46:7<845::AID-NAV6>3.0.CO;2-#
[3]Qi, X.; Chen, T.; Tu, F.: Scheduling the maintenance on a single machines, Journal of operational research society 50, 1071-1078 (1999) · Zbl 1054.90550
[4]Lee, C. -Y.; Chen, Z. -L.: Scheduling jobs and maintenance activities on parallel machine, Naval research logistics 47, 145-165 (2000) · Zbl 0973.90034 · doi:10.1002/(SICI)1520-6750(200003)47:2<145::AID-NAV5>3.0.CO;2-3
[5]Lee, C. -Y.; Lin, C. -S.: Single-machine scheduling with maintenance and repair rate-modifying activity, European journal of operational research 135, 493-513 (2001)
[6]L.O. Whitaker, Integrated production and maintenance activities, MS Thesis, Department of Industrial Engineering, Texas Aamp;M University, College Station, TX, 1996.
[7]Mosheiov, G.; Oron, D.: Due-date assignment and maintenance activity scheduling problem, Mathematical and computer modelling 44, 1053-1057 (2006) · Zbl 1161.90397 · doi:10.1016/j.mcm.2006.03.008
[8]Mosheiov, G.; Sidney, J. B.: New results on sequencing with rate modification, Infor 41, 155-163 (2004)
[9]Gordon, V. S.; Tarasevich, A. A.: A note: common due date assignment for a single machine scheduling with the rate-modifying activity, Computers and operations research 36, 325-328 (2009) · Zbl 1163.90488 · doi:10.1016/j.cor.2007.10.008
[10]Zhao, C. -L.; Tang, H. -Y.; Cheng, C. -D.: Two-parallel machines scheduling with rate-modifying activities to minimize total completion time, European journal of operational research 198, 354-357 (2009) · Zbl 1163.90518 · doi:10.1016/j.ejor.2008.08.012
[11]Sun, K.; Li, H.: Scheduling problems with multiple maintenance activities and non-preemptive jobs on two identical parallel machines, International journal of production economics 124, 151-158 (2010)
[12]Ji, M.; Cheng, T. C. E.: Scheduling with job-dependent learning effects and multiple rate-modifying activities, Information processing letters 110, 460-463 (2010) · Zbl 1229.90061
[13]Kubzin, M. A.; Strusevich, V. A.: Planning machine maintenance in two-machine shop scheduling, Operations research 54, 789-800 (2006) · Zbl 1167.90669 · doi:10.1287/opre.1060.0301
[14]Mosheiov, G.; Sidney, J. B.: Scheduling a deteriorating maintenance activity on a single machine, Journal of operational research society 61, 882-887 (2010) · Zbl 1193.90106 · doi:10.1057/jors.2009.5
[15]Wang, J. -J.; Wang, J. -B.; Liu, F.: Scheduling a deteriorating maintenance activity on a single machine, Journal of operational research society (2010)
[16]Yang, S. -J.; Yang, D. -L.; Cheng, T. C. E.: Single-machine due-window assignment and scheduling with job-dependent aging effects and deteriorating maintenance, Computers and operations research 37, 1510-1514 (2010) · Zbl 1183.90203 · doi:10.1016/j.cor.2009.11.007
[17]Yang, S. -J.; Yang, D. -L.: Minimizing the makespan on single-machine scheduling with aging effect and variable maintenance activities, Omega 38, 528-533 (2010)
[18]Yang, S. -J.; Yang, D. -L.: Minimizing total completion time in single-machine scheduling with aging/deteriorating effects and deteriorating maintenance activities, Computers and mathematics with applications 60, 2161-2169 (2010) · Zbl 1205.90141 · doi:10.1016/j.camwa.2010.08.003
[19]Cheng, T. C. E.; Yang, S. -J.; Yang, D. -L.: Common due-window assignment and scheduling of linear time-dependent deteriorating jobs and a deteriorating maintenance activity, International journal of production economics (2010)
[20]Cheng, T. C. E.; Hsu, C. -J.; Yang, D. -L.: Unrelated parallel-machine scheduling with deteriorating maintenance activities, Computers and industrial engineering (2010)
[21]Yang, S. -J.: Single-machine scheduling problems with both start-time dependent learning and position dependent aging effects under deteriorating maintenance consideration, Applied mathematics and computation 217, 3321-3329 (2011) · Zbl 1202.90149 · doi:10.1016/j.amc.2010.08.064
[22]Merten, A. G.; Muller, M. E.: Variance minimization in single machine sequencing problems, Management science 18, 518-528 (1972) · Zbl 0254.90040 · doi:10.1287/mnsc.18.9.518
[23]Schrage, L.: Minimizing the time-in-system variance for a finite jobset, Management science 21, 540-543 (1975) · Zbl 0302.90021 · doi:10.1287/mnsc.21.5.540
[24]Eilon, S.; Chowdhury, I. E.: Minimizing waiting time variance in the single machine problem, Management science 23, 567-575 (1977) · Zbl 0362.90051 · doi:10.1287/mnsc.23.6.567
[25]Vani, V.; Raghavachari, M.: Deterministic and random single machine sequencing with variance minimization, Operations research 35, 111-120 (1987) · Zbl 0616.90027 · doi:10.1287/opre.35.1.111
[26]Wang, J. -B.; Xia, Z. -Q.: Single machine scheduling problems with controllable processing times and total absolute differences penalties, European journal of operational research 177, 638-645 (2007) · Zbl 1109.90045 · doi:10.1016/j.ejor.2005.10.054
[27]Mor, B.; Mosheiov, G.: Total absolute deviation of job completion times on uniform and unrelated machines, Computers and operations research 38, 660-665 (2011) · Zbl 1201.90083 · doi:10.1016/j.cor.2010.08.005
[28]Kanet, J. J.: Minimizing variation of flow time in single machine systems, Management science 27, 1453-1459 (1981) · Zbl 0473.90048 · doi:10.1287/mnsc.27.12.1453
[29]Bagchi, U. B.: Simultaneous minimization of mean and variation of flow-time and waiting time in single machine systems, Operations research 37, 118-125 (1989) · Zbl 0661.90046 · doi:10.1287/opre.37.1.118
[30]Cheng, T. C. E.; Ding, Q.; Lin, B. M. T.: A concise survey of scheduling with time-dependent processing times, European journal of operational research 152, 1-13 (2004) · Zbl 1030.90023 · doi:10.1016/S0377-2217(02)00909-8
[31]Gawiejnowicz, S.: Time-dependent scheduling, (2008)
[32]Wang, J. -B.: Single machine scheduling with a time-dependent learning effect and deteriorating jobs, Journal of the operational research society 60, 583-586 (2009) · Zbl 1163.90515 · doi:10.1057/palgrave.jors.2602607
[33]Yang, S. -H.; Wang, J. -B.: Minimizing total weighted completion time in a two-machine flow shop scheduling under simple linear deterioration, Applied mathematics and computation 217, 4819-4826 (2011) · Zbl 1230.90104 · doi:10.1016/j.amc.2010.11.037
[34]Graham, R. L.; Lawler, E. L.; Lenstra, J. K.; Kan, A. H. G. Rinnooy: Optimization and approximation in deterministic sequencing and scheduling: a survey, Annals of discrete mathematics 5, 287-326 (1979) · Zbl 0411.90044
[35]G, G. Mosheiov: Parallel machine scheduling with a learning effect, Journal of the operational research society 52, 1165-1169 (2001) · Zbl 1178.90159 · doi:10.1057/palgrave.jors.2601215