zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multiobjective optimization problems with modified objective functions and cone constraints and applications. (English) Zbl 1230.90166
Summary: In this paper, we consider a differentiable multiobjective optimization problem with generalized cone constraints (for short, MOP). We investigate the relationship between weakly efficient solutions for (MOP) and for the multiobjective optimization problem with the modified objective function and cone constraints [for short, (MOP) η (x)] and saddle points for the Lagrange function of (MOP) η involving cone invex functions under some suitable assumptions. We also prove the existence of weakly efficient solutions for (MOP) and saddle points for Lagrange function of (MOP) η by using the Karush-Kuhn-Tucker type optimality conditions under generalized convexity functions. As an application, we investigate a multiobjective fractional programming problem by using the modified objective function method.
MSC:
90C29Multi-objective programming; goal programming
90C46Optimality conditions, duality
47J20Inequalities involving nonlinear operators
References:
[1]Aghezzaf B., Hachimi M.: Generalized invexity and duality in multiobjective programming problems. J. Global Optim. 18, 91–101 (2000) · Zbl 0970.90087 · doi:10.1023/A:1008321026317
[2]Antczak T.: A new approach to multiobjective programming with a modified objective function. J. Global Optim. 27, 485–495 (2003) · Zbl 1059.90126 · doi:10.1023/A:1026080604790
[3]Antczak T.: An η-approximation approach for nonlinear mathematical programming problems involving invex functions. Num. Funct. Anal. Optim. 25, 423–438 (2004) · Zbl 1071.90032 · doi:10.1081/NFA-200042183
[4]Antczak T.: Modified ratio objective approach in mathematical programming. J. Optim. Theory Appl. 126, 23–40 (2005) · Zbl 1093.90061 · doi:10.1007/s10957-005-2654-5
[5]Antczak T.: An η-approximation method in nonlinear vector optimization. Nonlinear Anal. 63, 236–255 (2005)
[6]Antczak T.: An η-approximation approach to duality in mathematical programming problems involving r-invex functions. J. Math. Anal. Appl. 315, 555–567 (2006) · Zbl 1140.90048 · doi:10.1016/j.jmaa.2005.08.009
[7]Bonnans J.F., Shapiro A.: Perturbation Analysis of Optimization Problem. Springer-Verlag, New York (2000)
[8]Craven, B.D.: Control and Optimization. Chapman & Hall (1995)
[9]Crouzeix J.P., Martinez-Legaz, J.E., Volle, M.: Generalized convexity, generalized monotonicity, proceedings of the fifth symposium on generalized convexity, Kluwer Academic Publishers, Luminy, France, (1997)
[10]Dutta J.: On generalized preinvex functions. Asia-Pacific J. Oper. Res. 18, 257–272 (2001)
[11]Eguda R.R., Hanson M.A.: Multiobjective duality with invexity. J. Math. Anal. Appl. 126, 469–477 (1987) · Zbl 0635.90086 · doi:10.1016/0022-247X(87)90054-0
[12]Giannessi, F. (eds): Vector Variational Inequalities and Vector Equilibrium. Kluwer Academic Publishers, Dordrechet, Boston, London (2000)
[13]Hanson M.A.: On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, 545–550 (1981) · Zbl 0463.90080 · doi:10.1016/0022-247X(81)90123-2
[14]Khan Z.A., Hanson M.A.: On ratio invexity in mathematical programming. J. Math. Anal. Appl. 205, 330–336 (1997) · Zbl 0872.90094 · doi:10.1006/jmaa.1997.5180
[15]Li L., Li J.: Equivalence and existence of weak Pareto optima for multiobjective optimization problems with cone constraints. Appl. Math. Lett. 21, 599–606 (2008) · Zbl 1191.90057 · doi:10.1016/j.aml.2007.07.012
[16]Luc D.T.: Theory of Vector Optimization. Springer-Verlag, Berlin (1989)
[17]Mishra S.K., Wang S.Y., Lai K.K.: Optimality and duality in nondifferentiable and multiobjective programming under generalized d-invexity. J. Global Optim. 29, 425–438 (2004) · doi:10.1023/B:JOGO.0000047912.69270.8c
[18]Weir T., Jeyakumar V.: A class of nonconvex functions and mathematical programming. Bull. Austral. Math, Soc. 38, 177–189 (1988) · Zbl 0639.90082 · doi:10.1017/S0004972700027441
[19]Weir T., Mond B., Craven B.D.: On duality for weakly minimized vector valued optimization. Optimiz. 17, 711–721 (1986) · Zbl 0606.49011 · doi:10.1080/02331938608843188