zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Semantic operations of multiple soft sets under conflict. (English) Zbl 1231.03045
Summary: Molodtsov initiated the concept of soft set theory, which can be used as a generic mathematical tool for dealing with uncertainty. Description Logics (DLs) are a family of knowledge representation languages which can be used to represent the terminological knowledge of an application domain in a structured and formally well-understood way. Nowadays, properties and semantics of ontology constructs mainly are determined by DLs. In this paper we investigate semantic operations of multiple standard soft sets by using domain ontologies (i.e., DL intensional knowledge bases). Concretely, we give some semantic operations such as complement, restricted difference, extended union, restricted intersection, restricted union, extended intersection, AND, and OR for (multiple) standard soft sets from a semantic point of view. Especially, we also present an approach to deal with conflict from a semantic point of view when we define these semantic operations. Moreover, the basic properties and implementation methods of these semantic operations under conflict are also presented and discussed.
MSC:
03E72Fuzzy set theory
Software:
Pellet
References:
[1]Feng, F.; Jun, Y. B.; Zhao, X.: Soft semirings, Computers mathematics with applications 56, No. 10, 2621-2628 (2008)
[2]Jun, Y. B.; Lee, K. J.; Park, C. H.: Fuzzy soft set theory applied to BCK/BCI-algebras, Computers mathematics with applications 59, No. 9, 3180-3192 (2010) · Zbl 1193.06019 · doi:10.1016/j.camwa.2010.03.004
[3]Qin, K.; Hong, Z.: On soft equality, Journal of computational and applied mathematics 234, No. 5, 1347-1355 (2010) · Zbl 1188.08001 · doi:10.1016/j.cam.2010.02.028
[4]Molodtsov, D.: Soft set theory–first results, Computers mathematics with applications 37, No. 4–5, 19-31 (1999) · Zbl 0936.03049 · doi:10.1016/S0898-1221(99)00056-5
[5]Aktas, H.; Cagman, N.: Soft sets and soft groups, Information sciences 177, No. 13, 2726-2735 (2007) · Zbl 1119.03050 · doi:10.1016/j.ins.2006.12.008
[6]Feng, F.; Li, C.; Davvaz, B.; Ali, M. I.: Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft computing 14, No. 9, 899-911 (2010) · Zbl 1201.03046 · doi:10.1007/s00500-009-0465-6
[7]Maji, P. K.; Roy, A. R.; Biswas, R.: An application of soft sets in a decision making problem, Computers mathematics with applications 44, No. 8–9, 1077-1083 (2002) · Zbl 1044.90042 · doi:10.1016/S0898-1221(02)00216-X
[8]Chen, D.; Tsang, E. C. C.; Yeung, D. S.; Wang, X.: The parameterization reduction of soft sets and its applications, Computers mathematics with applications 49, No. 5-6, 757-763 (2005) · Zbl 1074.03510 · doi:10.1016/j.camwa.2004.10.036
[9]Kong, Z.; Gao, L.; Wang, L.; Li, S.: The normal parameter reduction of soft sets and its algorithm, Computers mathematics with applications 56, No. 12, 3029-3037 (2008) · Zbl 1165.90699 · doi:10.1016/j.camwa.2008.07.013
[10]Roy, A. R.; Maji, P. K.: A fuzzy soft set theoretic approach to decision making problems, Journal of computational and applied mathematics 203, No. 2, 412-418 (2007) · Zbl 1128.90536 · doi:10.1016/j.cam.2006.04.008
[11]Kong, Z.; Gao, L.; Wang, L.: Comment on a fuzzy soft set theoretic approach to decision making problems, Journal of computational and applied mathematics 223, No. 2, 540-542 (2009) · Zbl 1159.90421 · doi:10.1016/j.cam.2008.01.011
[12]Feng, F.; Jun, Y. B.; Liu, X.; Li, L.: An adjustable approach to fuzzy soft set based decision making, Journal of computational and applied mathematics 234, No. 1, 10-20 (2010)
[13]Zou, Y.; Xiao, Z.: Data analysis approaches of soft sets under incomplete information, Knowledge-based systems 21, No. 8, 941-945 (2008)
[14]Xiao, Z.; Gong, K.; Zou, Y.: A combined forecasting approach based on fuzzy soft sets, Journal of computational and applied mathematics 228, No. 1, 326-333 (2009) · Zbl 1161.91472 · doi:10.1016/j.cam.2008.09.033
[15]Kalayathankal, S. J.; Singh, G. S.: A fuzzy soft flood alarm model, Mathematics and computers in simulation 80, No. 5, 887-893 (2010) · Zbl 1183.94069 · doi:10.1016/j.matcom.2009.10.003
[16]Acar, U.; Koyuncu, F.; Tanay, B.: Soft sets and soft rings, Computers mathematics with applications 59, No. 11, 3458-3463 (2010)
[17]Ali, M. I.; Shabir, M.; Naz, M.: Algebraic structures of soft sets associated with new operations, Computers mathematics with applications 61, No. 9, 2647-2654 (2011) · Zbl 1221.03056 · doi:10.1016/j.camwa.2011.03.011
[18]Babitha, K. V.; Sunil, J. J.: Soft set relations and functions, Computers mathematics with applications 60, No. 7, 1840-1849 (2010)
[19]Maji, P. K.; Biswas, R.; Roy, A. R.: Soft set theory, Computers mathematics with applications 45, No. 4–5, 555-562 (2003)
[20]Majumdar, P.; Samanta, S. K.: On soft mappings, Computers mathematics with applications 60, No. 9, 2666-2672 (2010)
[21]Sezgin, A.; Atagun, A. O.: On operations of soft sets, Computers mathematics with applications 61, No. 5, 1457-1467 (2011)
[22]Shabir, M.; Naz, M.: On soft topological spaces, Computers mathematics with applications 61, No. 7, 1786-1799 (2011)
[23]Ali, M. I.; Feng, F.; Liu, X.; Min, W. K.; Shabir, M.: On some new operations in soft set theory, Computers mathematics with applications 57, No. 9, 1547-1553 (2009)
[24]Maji, P. K.; Biswas, R.; Roy, A. R.: Fuzzy soft sets, Journal of fuzzy mathematics 9, No. 3, 589-602 (2001) · Zbl 0995.03040
[25]Majumdar, P.; Samanta, S. K.: Generalised fuzzy soft sets, Computers mathematics with applications 59, No. 4, 1425-1432 (2010)
[26]Maji, P. K.; Biswas, R.; Roy, A. R.: Intuitionistic fuzzy soft sets, Journal of fuzzy mathematics 9, No. 3, 677-692 (2001) · Zbl 1004.03042
[27]Maji, P. K.; Roy, A. R.; Biswas, R.: On intuitionistic fuzzy soft sets, Journal of fuzzy mathematics 12, No. 3, 669-683 (2004) · Zbl 1062.03052
[28]Xu, W.; Ma, J.; Wang, S.; Hao, G.: Vague soft sets and their properties, Computers mathematics with applications 59, No. 2, 787-794 (2010)
[29]Yang, X. B.; Lin, T. Y.; Yang, J. Y.; Li, Y.; Yu, D.: Combination of interval-valued fuzzy set and soft set, Computers mathematics with applications 58, No. 3, 521-527 (2009) · Zbl 1189.03064 · doi:10.1016/j.camwa.2009.04.019
[30]Jiang, Y.; Tang, Y.; Chen, Q.; Liu, H.; Tang, J.: Interval-valued intuitionistic fuzzy soft sets and their properties, Computers mathematics with applications 60, No. 3, 906-918 (2010)
[31]Aygunoglu, A.; Aygun, H.: Introduction to fuzzy soft groups, Computers mathematics with applications 58, No. 6, 1279-1286 (2009) · Zbl 1189.20068 · doi:10.1016/j.camwa.2009.07.047
[32]Jun, Y. B.: Soft BCK/BCI-algebras, Computers mathematics with applications 56, No. 5, 1408-1413 (2008)
[33]Jun, Y. B.; Park, C. H.: Applications of soft sets in ideal theory of BCK/BCI-algebras, Information sciences 178, No. 11, 2466-2475 (2008) · Zbl 1184.06014 · doi:10.1016/j.ins.2008.01.017
[34]Jun, Y. B.; Lee, K. J.; Park, C. H.: Soft set theory applied to ideals in d-algebras, Computers mathematics with applications 57, No. 3, 367-378 (2009) · Zbl 1165.03339 · doi:10.1016/j.camwa.2008.11.002
[35]Jun, Y. B.; Lee, K. J.; Zhan, J.: Soft p-ideals of soft BCI-algebras, Computers mathematics with applications 58, No. 10, 2060-2068 (2009)
[36]Xiao, Z.; Gong, K.; Xia, S.; Zou, Y.: Exclusive disjunctive soft sets, Computers mathematics with applications 59, No. 6, 2128-2137 (2010)
[37]Jiang, Y.; Tang, Y.; Chen, Q.; Wang, J.; Tang, S.: Extending soft sets with description logics, Computers mathematics with applications 59, No. 6, 2087-2096 (2010) · Zbl 1189.68140 · doi:10.1016/j.camwa.2009.12.014
[38]Baader, F.; Calvanese, D.; Mcguinness, D.; Nardi, D.; Patel-Schneider, P.: The description logic handbook: theory, implementation and applications, (2007)
[39]Jiang, Y.; Tang, Y.; Wang, J.; Tang, S.: Reasoning within intuitionistic fuzzy rough description logics, Information sciences 179, No. 14, 2362-2378 (2009) · Zbl 1192.68672 · doi:10.1016/j.ins.2009.03.001
[40]Jiang, Y.; Wang, J.; Tang, S.; Xiao, B.: Reasoning with rough description logics: an approximate concepts approach, Information sciences 179, No. 5, 600-612 (2009) · Zbl 1170.68037 · doi:10.1016/j.ins.2008.10.021
[41]Bobillo, F.; Delgado, M.; Gomez-Romero, J.; Straccia, U.: Fuzzy description logics under Gödel semantics, International journal of approximate reasoning 50, No. 3, 494-514 (2009) · Zbl 1191.68647 · doi:10.1016/j.ijar.2008.10.003
[42]Jiang, Y.; Liu, H.; Tang, Y.; Chen, Q.: Semantic decision making using ontology-based soft sets, Mathematical and computer modelling 53, No. 5–6, 1140-1149 (2011) · Zbl 1217.68213 · doi:10.1016/j.mcm.2010.11.080
[43]Studer, R.; Benjamins, V. R.; Fensel, D.: Knowledge engineering: principles and methods, Data knowledge engineering 25, No. 1–2, 161-197 (1998) · Zbl 0896.68114 · doi:10.1016/S0169-023X(97)00056-6
[44]Bobillo, F.; Delgado, M.; Gomez-Romero, J.: Representation of context-dependant knowledge in ontologies: a model and an application, Expert systems with applications 35, No. 4, 1899-1908 (2008)
[45]Schmidt-Schauß, M.; Smolka, G.: Attributive concept descriptions with complements, Artificial intelligence 48, No. 1, 1-26 (1991) · Zbl 0712.68095 · doi:10.1016/0004-3702(91)90078-X
[46]Bobillo, F.; Delgado, M.; Gomez-Romero, J.: Crisp representations and reasoning for fuzzy ontologies, International journal of uncertainty, fuzziness and knowledge-based systems 17, No. 4, 500-530 (2009) · Zbl 1193.68240 · doi:10.1142/S0218488509006121
[47]Sirin, E.; Parsia, B.; Grau, B. C.; Kalyanpur, A.; Katz, Y.: Pellet: a practical OWL-DL reasoner, Journal of web semantics 5, No. 2, 51-53 (2007)
[48]Motik, B.; Shearer, R.; Horrocks, I.: Hypertableau reasoning for description logics, Journal of artificial intelligence research 36, 165-228 (2009) · Zbl 1192.68664 · doi:10.1613/jair.2811