zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multiple stability and uniqueness of the limit cycle in a Gause-type predator-prey model considering the Allee effect on prey. (English) Zbl 1231.34053
Summary: A bidimensional differential equation system obtained by modifying the well-known predator-prey Rosenzweig-MacArthur model is analyzed by considering prey growth influenced by the Allee effect.

MSC:
34C05Location of integral curves, singular points, limit cycles (ODE)
92D25Population dynamics (general)
34C23Bifurcation (ODE)
34C37Homoclinic and heteroclinic solutions of ODE
References:
[1]Murdoch, W. W.; Briggs, C. J.; Nisbet, R. M.: Consumer-resources dynamics, (2003)
[2]Turchin, P.: Complex population dynamics. A theoretical/empirical synthesis, Monographs in population biology 35 (2003)
[3]Courchamp, F.; Clutton-Brock, T.; Grenfell, B.: Inverse density dependence and the allee effect, Trends in ecology and evolution 14, No. 10, 405-410 (1999)
[4]Dennis, B.: Allee effects: population growth, critical density, and the chance of extinction, Natural resource modeling 3, No. 4, 481-538 (1989) · Zbl 0850.92062
[5]Stephens, P. A.; Sutherland, W. J.: Consequences of the allee effect for behaviour, ecology and conservation, Trends in ecology and evolution 14, No. 10, 401-405 (1999)
[6]Freedman, H. I.: Deterministic mathematical models in population ecology, (1980)
[7]Kuang, Y.; Freedman, H. I.: Uniqueness of limit cycles in gause type models of predator–prey systems, Mathematical biosciences 88, 67-84 (1988) · Zbl 0642.92016 · doi:10.1016/0025-5564(88)90049-1
[8]Xiao, D.; Zhang, Z.: On the uniqueness and nonexistence of limit cycles for predator–prey systems, Nonlinearity 16, 1185-1201 (2003) · Zbl 1042.34060 · doi:10.1088/0951-7715/16/3/321
[9]Hasík, K.: On a predator–prey system of gause type, Journal of mathematical biology 60, 59-74 (2010)
[10]Liu, Y.: Geometric criteria for the nonexistence of cycles in gause-type predator–prey systems, Proceedings of the American mathematical society 133, 3619-3626 (2005) · Zbl 1077.34056 · doi:10.1090/S0002-9939-05-08026-3
[11]Cheng, K. S.: Uniqueness of a limit cycle for a predator–prey system, SIAM journal on mathematical analysis 12, 541-548 (1981) · Zbl 0471.92021 · doi:10.1137/0512047
[12]May, R. M.: Limit cycles in predator–prey communities, Science 177, 900-902 (1972)
[13]Albrecht, F.; Gatzke, H.; Wax, N.: Stable limit cycles in prey–predator populations, Science 181, 1073-1074 (1973)
[14]Chicone, C.: Ordinary differential equations with applications, Texts in applied mathematics 34 (2006) · Zbl 1120.34001
[15]Gaiko, V. A.: Global bifurcation theory and Hilbert’s sixteenth problem, Mathematics and its applications 559 (2003)
[16]Coleman, C. S.: Hilbert’s 16th. Problem: how many cycles?, Differential equations model, 279-297 (1983)
[17]Stephens, P. A.; Sutherland, W. J.; Freckleton, R. P.: What is the allee effect?, Oikos 87, 185-190 (1999)
[18]Berec, L.; Angulo, E.; Courchamp, F.: Multiple allee effects and population management, Trends in ecology and evolution 22, 185-191 (2007)
[19]Courchamp, F.; Berec, L.; Gascoigne, J.: Allee effects in ecology and conservation, (2008)
[20]Angulo, E.; Roemer, G. W.; Berec, L.; Gascoigne, J.; Courchamp, F.: Double allee effects and extinction in the island fox, Conservation biology 21, 1082-1091 (2007)
[21]Bazykin, A. D.; Berezovskaya, F. S.; Isaev, A. S.; Khlebopros, R. G.: Dynamics of forest insect density: bifurcation approach, Journal of theoretical biology 186, 267-278 (1997)
[22]Conway, E. D.; Smoller, J. A.: Global analysis of a system of predator–prey equations, SIAM journal on applied mathematics 46, No. 4, 630-642 (1986) · Zbl 0608.92016 · doi:10.1137/0146043
[23]Bazykin, A. D.: Nonlinear dynamics of interacting populations, (1998)
[24]J.D. Flores, J. Mena-Lorca, B. González-Yañez, E. González-Olivares, Consequences of depensation in a Smith’s Bioeconomic model for open-access fishery, in: R. Mondaini (Ed.), Proceedings of the International Symposium on Mathematical and Computational Biology BIOMAT 2006, E-papers Serviços Editoriais Ltda., 2007, pp. 219–232.
[25]González-Olivares, E.; Rojas-Palma, A.: Multiple limit cycles in a gause type predator–prey model with Holling type III functional response and allee effect on prey, Bulletin of mathematical biology 73, 1378-1397 (2011) · Zbl 1215.92061 · doi:10.1007/s11538-010-9577-5
[26]Van Voorn, G. A. K.; Hemerik, L.; Boer, M. P.; Kooi, B. W.: Heteroclinic orbits indicate overexploitation in predator–prey systems with a strong allee, Mathematical biosciences 209, 451-469 (2007) · Zbl 1126.92062 · doi:10.1016/j.mbs.2007.02.006
[27]Wang, M. -H.; Kot, M.: Speeds of invasion in a model with strong or weak allee effects, Mathematical biosciences 171, 83-97 (2001) · Zbl 0978.92033 · doi:10.1016/S0025-5564(01)00048-7
[28]Wang, J.; Shi, J.; Wei, J.: Predator–prey system with strong allee effect in prey, Journal of mathematical biology 62, 291-331 (2011) · Zbl 1232.92076 · doi:10.1007/s00285-010-0332-1
[29]Clark, C. W.: Mathematical bioeconomics: the optimal management of renewable resources, (1990) · Zbl 0712.90018
[30]Clark, C. W.: The worldwide crisis in fisheries: economic model and human behavior, (2007)
[31]Liermann, M.; Hilborn, R.: Depensation: evidence, models and implications, Fish and fisheries 2, 33-58 (2001)
[32]Boukal, D. S.; Sabelis, M. W.; Berec, L.: How predator functional responses and allee effects in prey affect the paradox of enrichment and population collapses, Theoretical population biology 72, 136-147 (2007) · Zbl 1123.92034 · doi:10.1016/j.tpb.2006.12.003
[33]Boukal, D. S.; Berec, L.: Single-species models and the allee effect: extinction boundaries, sex ratios and mate encounters, Journal of theoretical biology 218, 375-394 (2002)
[34]E. González-Olivares, B. González-Yañez, J. Mena-Lorca, R. Ramos-Jiliberto, Modelling the Allee effect: are the different mathematical forms proposed equivalents? in: R. Mondaini (Ed.), Proceedings of the International Symposium on Mathematical and Computational Biology BIOMAT 2006, E-papers Serviços Editoriais Ltda., Rio de Janeiro, 2007, pp. 53–71.
[35]Goh, B. -S.: Management and analysis of biological populations, (1980)
[36]González-Olivares, E.; Ramos-Jiliberto, R.: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecological modelling 166, 135 (2003)
[37]H. Meneses-Alcay, E. González-Olivares, Consequences of the Allee effect on Rosenzweig–MacArthur predator–prey model, in: R.Mondaini (Ed.), Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology BIOMAT 2003, E-papers Serviços Editoriais Ltda., vol. 2 2004, pp. 264–277.
[38]Dumortier, F.; Llibre, J.; Artés, J. C.: Qualitative theory of planar differential systems, (2006)
[39]Arrowsmith, D. K.; Place, C. M.: Dynamical systems. Differential equations, maps and chaotic behaviour, (1992) · Zbl 0754.34001
[40]Coulson, T.; Rohani, P.; Pascual, M.: Skeletons, noise and population growth: the end of an old debate?, Trends in ecology and evolution 19, 359-364 (2004)
[41]Wolfram Research, Mathematica: a system for doing mathematics by computer, Champaing, IL, 1988.