zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Critical oscillation constant for half-linear differential equations with periodic coefficients. (English) Zbl 1231.34059
The authors give explicitly the oscillation constant for certain half-linear second order differential equations involving periodic coefficients. Also, answers to some open problems are provided.
34C10Qualitative theory of oscillations of ODE: zeros, disconjugacy and comparison theory
[1]Bertsekas D.P.: Nonlinear Programming. Athena Scientific, Belmont, Massachusetts (1999)
[2]Došlý O.: Perturbations of the half-linear Euler-Weber type differential equation. J. Math. Anal. Appl. 323, 426–440 (2006) · Zbl 1107.34030 · doi:10.1016/j.jmaa.2005.10.051
[3]Došlý O., Ünal M.: Linearly independent solutions of half-linear differential equations. Nonlinear Anal. 71, 4026–4033 (2009) · Zbl 1173.34320 · doi:10.1016/j.na.2009.02.085
[4]Došlý O., Řehák P.: Half-linear Differential Equations. Elsevier, Amsterdam (2005)
[5]Elbert Á.: A half-linear second order differential equation. Colloq. Math. Soc. Janos Bolyai 30, 158–180 (1979)
[6]Elbert Á.: Asymptotic behaviour of autonomous half-linear differential systems on the plane. Studia Sci. Math. Hung. 19, 447–464 (1984)
[7]Elber Á., Schneider A.: Perturbations of half-linear Euler differential equation. Result Math. 37, 56–83 (2000) · doi:10.1007/BF03322512
[8]Hasil P.: Conditional oscillation of half-linear differential equations with periodic coefficients. Arch. Math. (Brno) 44, 119–131 (2008)
[9]Krüger H., Teschl G.: Effective Prüfer angles and relative oscillation criteria. J. Differ. Equ. 245, 3823–3848 (2009) · Zbl 1167.34009 · doi:10.1016/j.jde.2008.06.004
[10]Schmidt K.M.: Oscillation of perturbed Hill equation and lower spectrum of radially periodic Schrödinger operators in the plane. Proc. Am. Math. Soc. 127, 2367–2374 (1999) · Zbl 0918.34039 · doi:10.1090/S0002-9939-99-05069-8
[11]Schmidt K.M.: Critical coupling constant and eigenvalue asymptotics of perturbed periodic Sturm-Liouville operators. Commun. Math. Phys. 211, 465–485 (2000) · Zbl 0953.34069 · doi:10.1007/s002200050822
[12]Sugie J., Yamaoka N.: Comparison theorems for oscillation of second-order half-linear differential equations. Acta Math. Hungar. 111, 165–179 (2006) · Zbl 1116.34030 · doi:10.1007/s10474-006-0029-5
[13]Swanson C.A.: Comparison and Oscillation Theory of Linear Differential Equations. Academic Press, New York, London (1968)